申请试用
HOT
登录
注册
 
归纳
enough
/
发布于
/
1782
人观看
本章主要学习数学中运用的归纳法。归纳在数学中有着非常重要的作用。本文举例说明了利用归纳来证明论题的方法。通归纳证明模板更好的学习了归纳法。
展开查看详情

1 .Induction 2/24/12 1

2 .The Idea of Induction Color the integers ≥ 0 0 , 1 , 2 , 3 , 4 , 5 , … I tell you, 0 is red , & any int next to a red integer is red , then you know that all the ints are red ! 2/24/12 2

3 .Induction Rule 2/24/12 3

4 .Like Dominos…

5 .Example Induction Proof Let’s prove: (for r ≠ 1)

6 .Statements in magenta form a template for inductive proofs: Proof: (by induction on n ) The induction hypothesis, P ( n ) , is: Example Induction Proof (for r ≠ 1)

7 .Base Case ( n = 0 ) : Example Induction Proof 1 OK!

8 .Inductive Step: Assume P ( n ) for some n ≥ 0 and prove P ( n+1 ) : Example Induction Proof

9 .Now from induction hypothesis P ( n ) we have Example Induction Proof so add r n+1 to both sides

10 .adding r n+1 to both sides, Example Induction Proof This proves P ( n+1 ) completing the proof by induction.

11 .“  ” is an ellipsis . Can lead to confusion (n = 0 ?) Sum notation more precise Means you should see a pattern : an aside: ellipsis

0 点赞
0 收藏
0下载
相关文档
确认
3秒后跳转登录页面
去登陆