- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 视频嵌入链接 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
6月26日【Spark Relational Cache 原理和实践】
6月26日【Spark Relational Cache 原理和实践】
讲师:李呈祥,阿里巴巴计算平台事业部EMR团队的高级技术专家,Apache Hive Committer, Apache Flink Committer,深度参与了Hadoop,Hive,Spark,Flink等开源项目的研发工作,对于SQL引擎,分布式系统有较为深入的了解和实践,目前主要专注于EMR产品中开源计算引擎的优化工作。
内容介绍:主要介绍Relational Cache/物化视图的历史和背景,以及EMR Spark基于Relational Cache加速Spark查询的技术方案,及如何通过基于Relational Cache的数据预计算和预组织,使用Spark支持亚秒级响应的交互式分析使用场景。
阿里巴巴开源大数据EMR技术团队成立Apache Spark中国技术社区,定期打造国内Spark线上线下交流活动。请持续关注。
钉钉群号:21784001
团队群号:HPRX8117
微信公众号:Apache Spark技术交流社区
展开查看详情
1 .Spark Relational Cache: Spark -EM R
2 .Agenda • Relational Cache • Relational Cache • • Relational Cache •
3 . TB/PB Tran sactio n SQ L o n gap H ad o o p Spark
4 . J c O • • • • • a • • a • bd ZI e • F
5 .• • • o • i • J n • •
6 .,3 143m B rVnC 3u iec sie tw s 3 A32 . 3 3 4 4 B 4 2 • 3 O 1 143 ieR • P r 1 143I Q S z p Brap k LhB ie ra M l • d P bieo BR o 1 143D i e
7 . Relational Cache Admin User Cache
8 .Relational Cache Part I
9 . Relational Cache CACHE [LAZY] TABLE view_name [REFRESH ON (DEMAND | COMMIT)] [(ENABLE | DISABLE) REWRITE] JSON [USING datasource PARQUET… [LOCATION cache_storage_dir] HDFS OSS… [PARTITIONED BY (col_name1, col_name2, ...)] [CLUSTERED BY (col_name3, col_name4, ...) INTO num_buckets BUCKETS] [ZORDER BY (col_name5, col_name6, …)] [AS select_statement] cache Table View cache HDFS OSS JSON ORC Parquet
10 . Relational Cache – flat_sales orders, customers, nation, region cache HDFS parquet CACHE TABLE flat_orders REFRESH ON COM M IT ENABLE REW RITE USING parquet PARTITIONED BY (o_orderdate) COM M ENT “denormalized orders table” AS SELECT * FROM orders, customers, nation, region W HERE o_custkey = c_custkey AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey
11 . DDL • UNCACHE TABLE [IF EXISTS] table_name • ALTER TABLE table_name (ENABLE | DISABLE) REW RITE • ALTER TABLE table_name REFRESH ON (DEM AND | COM M IT) • REFRESH CACHE cache_name [W ITH TABLE base_table_name partition(key=value)] • SHOW CACHES
12 .Part II
13 .1. Spark spark.sql.cache.queryRewrite 2. ALTER Relational Cache 3. Relational Cache
14 .Query Rewrite case1 Relational Cache: Rewritten Query: CACHE TABLE mv SELECT empid, deptname, hire_date USING parquet AS SELECT empid, deptname, hire_date FROM mv FROM emps JOIN depts ON (emps.depno = WHERE hire_date >= ‘2018-01-01’ AND depts.depno) hire_date <= ‘2018-06-30’ WHERE hire_date > ‘2016-01-01’ empid deptnam hire_date e Query: 10320 IT 2016-03- empid deptnam hire_date SELECT empid, deptname, hire_date 23 e FROM emps JOIN depts ON (emps.depno = 10201 HR 2018-04- 10201 HR 2018-04- depts.depno) 02 02 WHERE hire_date >= ‘2018-01-01’ AND 10203 DEV 2018-05- 10203 DEV 2018-05- 29 29 hire_date <= ‘2018-06-30’ 13094 QA 2019-01- 09 mv result
15 .Query Rewrite case2 R elatio n al C ach e: CACHE TABLE mv Rewritten Query: USING parquet SELECT d_year, sum(lo_extprice) AS SELECT GROUPING_ID() as grouping_id, d_year, s_name, sum(lo_extprice) as lo_extprice_sum FROM mv FROM dates, lineorder, supplier WHERE lo_orderdate = d_datekey AND lo_suppkey = s_suppkey WHERE grouping_id = 2 AND d_year = 2014 GROUP BY CUBE(d_year, s_name) groupin d_year s_name sum(lo_ g_id extprice) 3 2014 Oracle 200 3 2014 Google 300 Query: 3 2013 Oracle 250 d_year sum(lo_ex SELECT d_year, sum(lo_extprice) tprice) 3 2013 Google 350 FROM dates, lineorder, supplier 2014 500 WHERE lo_orderdate = d_datekey AND 2 2014 null 500 lo_suppkey = s_suppkey AND d_year = 2014 2 2013 null 600 1 null Oracle 450 GROUP BY d_year 1 null Google 650 0 null null 1100 mv result
16 .Relational Cache Part III
17 . Cache • ON COM M IT cache cache • ON DEM AND REFRESH • Cache • ON DEM AND • ALTER
18 .1. Cache 2. cache 3. REFRESH CACHE cache_name W ITH TABLE base_table PARTITION(part_key=‘value’) Relational Cache + Delta =>
19 .Relational Cache OLAP
20 . EMR Spark Relational Cache OLAP • • Spark SQL/Dataset API • One Cache for All Queries Cache • Cube
21 .Star Schema Benchmark • TPCH • Benchmark • Oracle, ClickHouse OLAP SSB
22 .Cube Cube(s) 4000 3500 3000 2500 2000 1500 1000 500 0 1 10 100 1000 s par k EM R Spark Scale=1000 1T Cube 1
23 .Spark Cached vs Uncached • Cache Parquet Cache vs No Cache(ms) HDFS Lower is better 262144 250 • SSB cache 65536 scale cache 16384 200 cube 4096 150 1024 256 100 64 16 50 4 1 Cached( m s ) No Cache( m s ) Speedu p 0 2 20 40 200 1000 scale
24 .