申请试用
HOT
登录
注册
 
Accelerating Real Time Video Analytics on a Heterogenous CPU + FPGA Platform
Accelerating Real Time Video Analytics on a Heterogenous CPU + FPGA Platform

Accelerating Real Time Video Analytics on a Heterogenous CPU + FPGA Platform

Spark开源社区
/
发布于
/
3756
人观看

The current uptrend in faster computational power has led to a more mature eco-system for image processing and video analytics. By using deep neural networks for image recognition and object detection we can achieve better than human accuracies. Industrial sectors led by retail and finance want to take advantage of these latest developments in real-time analysis of video content for fraud detection, surveillance and many other applications.

There are a couple of challenges involved in the real word implementation of a video analytics solution:
1) Most video analytics use-cases are effective only when response times are in milliseconds. Requirement of performing at very low latencies gives rise to a need for software and hardware acceleration
2) Such solutions will need wide-spread deployment and are expected to have low TCO. To address these two key challenges we propose a video analytics solution leveraging Spark Structured Streaming + DL framework (like Intel’s Analytics-Zoo & Tensorflow) built on a heterogenous CPU + FPGA hardware platform.

The proposed solution provides >3x acceleration in performance to a video analytics pipeline when compared to a CPU only implementation while requiring zero code change on the application side as well as achieving more than 2x decrease in TCO. Our video analytics pipeline includes ingestion of video stream + H.264 decode to image frames + image transformation + image inferencing, that uses a deep neural network. FPGA based solution offloads the entire pipeline computation to the FPGA while CPU only solution implements the pipeline using OpenCV + Spark Structured Streaming + Intel’s Analytics-Zoo DL library.

Key Take aways:

  1. Optimizing performance of Spark Streaming + DL pipeline
  2. Acceleration of video analytics pipeline using FPGA to deliver high throughput at low latency and reduced TCO.
  3. Performance data for benchmarking CPU and CPU + FPGA based solution.
6点赞
2收藏
0下载
确认
3秒后跳转登录页面
去登陆