- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 视频嵌入链接 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
神经-符号系统的一些探索
讲者简介:俞扬,博士,南京大学教授,入选国家“万人计划”青年拔尖人才。主要研究领域为机器学习、强化学习。获得4项国际论文奖励和2项国际算法竞赛冠军,入选2018年IEEE Intelligent Systems杂志评选的“国际人工智能10大新星”,获2018亚太数据挖掘”青年成就奖”,2020年CCF-IEEE CS青年科学家奖。受邀在IJCAI’18作关于强化学习的”青年亮点”报告。
内容简介:人工智能从上世纪六十年代至今,前半程主要关注符号系统,其过程多符合人类高层认知,易于理解;后半程则主要关注学习系统,以神经网络为代表的模型往往难以解释。这两类系统天生不易兼容,难以协力。报告将汇报我们在神经网络与符号系统的转换和联通方面的一些探索。
展开查看详情
1 . http://lamda.nju.edu.cn 神经-符号系统的⼀些探索 俞扬 joint work with: 周志华教授、戴望州、徐秋灵、胡扬阳 南京大学 软件新技术国家重点实验室 机器学习与数据挖掘研究所(LAMDA)
2 .Inductive Learning Mapping sensory information to concepts Supervised learning objective arg min Ex⇠D loss(f✓ (x), y(x)) <latexit sha1_base64="1xDDF2NgKSjn1X59ZKKFTSSDkb4=">AAADbHicZVJNbxMxEHUTPsrylQK3CskiAiVSG+2GIq6toBLcWom0ldarldeZbFax1yvboYks/y5+CweucOM34GxDYZORbI3fvPdmLE1W8UKbMPy+02rfuXvv/u6D4OGjx0+edvaeXWg5VwxGTHKprjKqgRcljExhOFxVCqjIOFxmsw+r+uVXULqQ5RezrCARNC+LScGo8VDaOSdU5UQUZUrMFAzFp6klta1VMHYLoguBiaBmyijHHx3BxMDCWC61dr2JJ9cy11v0D/DS3/200w0HYR14O4nWSRet4yzda7XJWLK5gNIwTrWOo7AyiaXKFIyDC8hcQ0XZjOYQ+7SkAnRi6yEdfu2RMZ5I5U9pcI02FNV44idObK5oNS3YounHBCyi0DcTevXJRtHOjawK2sQ8US9FtgWuuusmujI0UnK9RTZT0cSyjTfluVSFp20O/K/igoDcdtBgrJ7Ka1nypYKJPlg9BC3nlBua6xW3hGsmhcfGlsCiAmZcPEzixAbYh629ssyeutR2IxeTGajyMBxE70DEuDvEyS1yBCJxtco1bdlf3yj5z6+HuxHub1BP3A1joujMnjgX+LWJNpdkO7kYDqK3g+H5Uff483qBdtE+eoV6KELv0TH6hM7QCDH0Df1AP9Gv1u/2i/Z+++UNtbWz1jxHjWi/+QNm5B5y</latexit> ✓ training distribution test distribution train/test data are sampled i.i.d. future is the same as the past, train on past data www. .nju.edu.cn
3 .Deep Learning Deep models (neural networks/forests) arg min Ex⇠D loss(f✓ (x), y(x)) <latexit sha1_base64="1xDDF2NgKSjn1X59ZKKFTSSDkb4=">AAADbHicZVJNbxMxEHUTPsrylQK3CskiAiVSG+2GIq6toBLcWom0ldarldeZbFax1yvboYks/y5+CweucOM34GxDYZORbI3fvPdmLE1W8UKbMPy+02rfuXvv/u6D4OGjx0+edvaeXWg5VwxGTHKprjKqgRcljExhOFxVCqjIOFxmsw+r+uVXULqQ5RezrCARNC+LScGo8VDaOSdU5UQUZUrMFAzFp6klta1VMHYLoguBiaBmyijHHx3BxMDCWC61dr2JJ9cy11v0D/DS3/200w0HYR14O4nWSRet4yzda7XJWLK5gNIwTrWOo7AyiaXKFIyDC8hcQ0XZjOYQ+7SkAnRi6yEdfu2RMZ5I5U9pcI02FNV44idObK5oNS3YounHBCyi0DcTevXJRtHOjawK2sQ8US9FtgWuuusmujI0UnK9RTZT0cSyjTfluVSFp20O/K/igoDcdtBgrJ7Ka1nypYKJPlg9BC3nlBua6xW3hGsmhcfGlsCiAmZcPEzixAbYh629ssyeutR2IxeTGajyMBxE70DEuDvEyS1yBCJxtco1bdlf3yj5z6+HuxHub1BP3A1joujMnjgX+LWJNpdkO7kYDqK3g+H5Uff483qBdtE+eoV6KELv0TH6hM7QCDH0Df1AP9Gv1u/2i/Z+++UNtbWz1jxHjWi/+QNm5B5y</latexit> ✓ Achieves extraordinary performance on sensing tasks www. .nju.edu.cn
4 .Reinforcement learning RL using deep models arg min Es⇠D⇡✓ reward(s, ⇡✓ (s)) <latexit sha1_base64="D5znIabET++zo3gI4F6bswHDtfs=">AAADenicZVJNj9MwEPW2fCzlY7tw5GJthNSKpUpKEdddwUpwWyT2Q4pD5LjT1KodR7ZLW1n+efwIfgNXuHEg6ZaFtCNZmnnvzZuxNFkpuLFh+H2v1b5z9979/Qedh48ePznoHj69NGquGVwwJZS+zqgBwQu4sNwKuC41UJkJuMpm72r+6itow1Xx2a5KSCTNCz7hjNoKSrspoTonkhcpsVOwFJ+ljqxtnYaxN8RwiYmkdsqowO+/OFLyjdR7gomFpa2UC6rHvmeOcU27Dd8z/X7aDcJBuA68m0SbJECbOE8PW20yVmwuobBMUGPiKCxt4qi2nAnwHTI3UFI2oznEVVpQCSZx65U9flEhYzxRunqFxWu00VGOJ9XKics1LaecLZt+TMIyCqth0tRfbpBublXJaROrhGYlsx2wnm6aaG1olRJmR2ynsollWzUVudK8km0v/I/xnQ65nWDAOjNVC1WIlYaJOa4LSYs5FZbmptYWsGBKVtjYEViWwKyPh0mcuA6uwq29ssyd+dQFkY/JDHTxKhxEb0DGOBji5BYZgUz8uss3bdlf3yj5z6+Hgwj3t6Sn/kYx0XTmTr3vVGcTbR/JbnI5HESvB8NPo+Dk4+aA9tFzdIR6KEJv0Qn6gM7RBWLoG/qBfqJfrd/to3a//fJG2trb9DxDjWiP/gDrQyUU</latexit> ✓ www. .nju.edu.cn
5 . The struggling of DL Yoshua Bengio: From System 1 Deep Learning to System 2 Deep Learning. NeurIPS’2019 Keynote deductive learning www. .nju.edu.cn
6 . Math QA Data [Amini et al. MathQA: Towards interpretable math word problem solving with operation-based formalisms. arXiv preprint arXiv:1905.13319, 2019.] www. .nju.edu.cn
7 .Deductive learning Deductive learning is a subclass of machine learning that studies algorithms for learning provably correct knowledge. Typically such methods are used to speedup problem solvers by adding knowledge to them that is deductively entailed by existing knowledge, but that may result in faster solutions. C. Sammut, G. I. Webb. Encyclopedia of Machine Learning and Data Mining which was the beginning of AI General Problem Solving, Automated Theorem Proving, Boolean Satisfiability, Expert Systems, Logic Programming, Inductive Logic Programming, Probabilistic Logic Programming, Constraint Logic Programming, Answer Set Programming, … www. .nju.edu.cn
8 .Inductive + Deductive ? ideally: learn concepts inductively + learn new knowledge deductively ➢ Probabilistic Logic Programming (PLP): attempts to extend first-order logic to accommodate probabilistic groundings such that probabilistic inference can be included heavy-reasoning light-learning ➢ Statistical Relational Learning (SRL): attempts to construct/initialize a probabilistic model based on domain knowledge expressed in first-order logic clauses heavy-learning light-reasoning www. .nju.edu.cn
9 .More recently Neural symbolic approaches differentiable memory differentiable programming differentiable logic e.g. DNC [Graves et al., Nature ’16] e.g. 𝜕4 [Bosnjak et al., ICML'17] e.g. 𝜕ILP [Evans and Grefenstette, JAIR'18] heavy-learning light-reasoning www. .nju.edu.cn
10 .Missing anything? Inductive + Deductive ? real values symbols differentiable non-differentiable end-to-end programmed www. .nju.edu.cn
11 .Human example Maya Calendar Calculation: 𝑋⊕𝑌=𝑍 www. .nju.edu.cn
12 .Unknown perception information www. .nju.edu.cn
13 .Background knowledge Three Mayan Calendar systems Long Count (玛雅⻓历) date : ? ?. 18 . 5 . ? . 0 They must be consistent à ? What are the ?’s Tzolk‘in (玛雅神历) date : ? Ahau ? Haab‘(玛雅太阳历) date : 13 Mac www. .nju.edu.cn
14 .Trial-and-error Matched ! Explanation: • (1.18.5.4.0): the 275480 day from origin • (1 Ahau): the 40th day of that year • (13 Mac): in the 13 month of that year www. .nju.edu.cn
15 .Abductive reasoning Perception Trial-and-error Calculation Glyphs ↦ Numbers Structure: 𝑋⊕𝑌=𝑍 (image) (symbol) Calculation rules: 20-based Equations should be correct Starts from incomplete observations, proceeds to the likeliest possible explana,on for the set www. .nju.edu.cn
16 .Abductive learning framework instances Su pe lea rv rn ised ing Classifier www. .nju.edu.cn
17 .Abductive learning framework replace Classifier Deductive pseudo Learning instances -labels pseudo-groundings A ¬B ¬C KB re as on ing Su pe lea rv abduced rn ised -labels ing Minimal A ¬B C abduction inconsistency Classifier Inductive Learning www. .nju.edu.cn
18 .An illustrative example The data: DBA (Digital Binary Additive equations); RBA (Random symbol Binary Additive equations) •Untrained perception model (CNN); •Unknown operation rules: add / logical xor / etc. •Learn perception and reasoning jointly; www. .nju.edu.cn
19 .Abductive learning implementation CNN www. .nju.edu.cn
20 . Background knowledge Equation structure (DCG grammars): Binary operation: • Allequations are X+Y=Z; • Digits are lists of 0 and 1. • Calculated bit-by-bit, from the last to the first; • Allow carries. www. .nju.edu.cn
21 .Optimization Mark up the “possibly wrong” pseudo-labels, where 𝛿 is a function to guess which perceived symbols are wrong. Maximise consistency by optimizing 𝛿 www. .nju.edu.cn
22 .Experiments Setting • Data: length 5-26 equations, each length 300 instances • DBA: MNIST equations; • RBA: Omniglot equations; • Binary addition and exclusive-or. • Compared methods: • ABL-all: Our approach with all training data • ABL-short: Our approach with only length 7-10 equations; • DNC: Memory-based DNN; • Transformer: Attention-based DNN; • BiLSTM: Seq-2-seq baseline; www. .nju.edu.cn
23 .Results www. .nju.edu.cn
24 .Training process www. .nju.edu.cn
25 .Perception accuracy www. .nju.edu.cn
26 .Model reuse reuse perception model reuse knowledge www. .nju.edu.cn
27 . Math QA Data [Amini et al. Mathqa: Towards interpretable math word problem solving with operation-based formalisms. arXiv preprint arXiv:1905.13319, 2019.] www. .nju.edu.cn
28 .SymPy ◦ Algebras ◦ Lie Algebra ◦ Assumptions ◦ Logic ◦ Calculus ◦ Matrices ◦ Category Theory ◦ Number Theory ◦ Code Generation ◦ Numeric Computation ◦ Combinatorics ◦ Numerical Evaluation ◦ Concrete ◦ ODE ◦ Core ◦ Parsing ◦ Cryptography ◦ PDE ◦ Differential Geometry ◦ Physics ◦ Diophantine ◦ Plotting ◦ Discrete ◦ Polynomial Manipulation ◦ Functions ◦ Printing ◦ Geometry ◦ Series ◦ Holonomic ◦ Sets ◦ Hypergeometric Expansion ◦ Simplify ◦ Inequality Solvers ◦ Solvers ◦ Integrals ◦ Solveset ◦ Computing Integrals using Meijer G-Functions ◦ Stats ◦ The G-Function Integration Theorems ◦ Tensor ◦ The Inverse Laplace Transform of a G-function ◦ Term Rewriting ◦ Implemented G-Function Formulae ◦ Utilities ◦ Interactive ◦ Vector www. .nju.edu.cn
29 .Abductive search space www. .nju.edu.cn