申请试用
HOT
登录
注册
 
Burger King使用RayOnSpark进行基于实时情景特征的快餐食品推荐使用
Burger King使用RayOnSpark进行基于实时情景特征的快餐食品推荐使用

Burger King使用RayOnSpark进行基于实时情景特征的快餐食品推荐使用

Analytics Zoo 社区
/
发布于
/
528
人观看

在快餐推荐的场景下,用户实时的点餐行为和各种情景特征(比如时间、天气和位置等)都是能够被用来做合适推荐的重要因素。在Burger King,我们开发了一个全新的Transformer Cross Transformer (TxT)推荐模型,用多个 Transformer编码器来提取用户点单行为和复杂的情景特征,并通过点积的方法将Transformer的输出组合在一起以生成推荐。线上A/B测试结果表明TxT模型不仅比现有的其他推荐模型取得了更好的效果,同时该模型也能被成功地应用到其他推荐场景中。

此外,我们利用 Analytics Zoo提供的RayOnSpark功能,使用 Ray, Apache Spark和 Apache MXNet 构建了一个完整的端到端的推荐系统。它将数据处理(使用 Spark )和分布式训练(使用 MXNet和Ray)集成到一个统一的数据分析和 AI 流水线中,并直接运行在存储数据的同一个大数据集群上。我们已经在 Burger King成功部署了这套推荐系统,并且已经在生产环境中取得了卓越的成果。

1 点赞
0 收藏
2下载
确认
3秒后跳转登录页面
去登陆