- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
A Deep Dive Into PostgreSQL Indexing
索引是关系数据库的基本特性,PostgreSQL为开发人员和设计人员提供了丰富的选项集合。为了充分利用这些优势,用户需要了解索引的基本概念,以便能够比较不同的索引类型以及它们如何应用于不同的应用场景。只有这样,您才能对数据库索引策略和设计做出明智的决定。
有一点是肯定的:并非所有指标都适用于所有情况,使用“错误”指标可能会产生与您预期相反的效果,而且问题在生产过程中可能只出现一次。有了更先进的知识,您可以避免这种最坏的情况!
我们将了解如何使用pg stat语句来查找向数据库添加索引的机会。我们将看看什么时候添加索引,什么时候添加索引不太可能产生好的解决方案。
那么,应该向每一列添加索引吗?来看看为什么很少推荐这种策略,因为我们深入研究了PostgreSQL索引。
展开查看详情
1 .Deep Dive Into PostgreSQL Indexes Ibrar Ahmed Senior Database Architect - Percona LLC May 2019
2 .Table Characteristics • Rows / Tuples stored in a table • Every table in PostgreSQL has physical disk file(s) postgres=# CREATE TABLE foo(id int, name text); postgres=# SELECT relfilenode FROM pg_class WHERE relname LIKE 'foo’; relfilenode ------------- 16384 • The physical files on disk can be seen in the PostgreSQL $PGDATA directory. $ ls -lrt $PGDATA/base/13680/16384 -rw------- 1 vagrant vagrant 0 Apr 29 11:48 $PGDATA/base/13680/16384 • Tuple stored in a table does not have any order 2
3 .Selecting Data 1/2 • Select whole table, must be a sequential scan. • Select table’s rows where id is 5432, it should not be a sequential scan. EXPLAIN SELECT name FROM bar; QUERY PLAN ---------------------------------------------------------------------------- Seq Scan on bar (cost=0.00..163693.05 rows=9999905 width=11 EXPLAIN SELECT name FROM bar WHERE id = 5432; QUERY PLAN ---------------------------------------------------------------------------- Gather (cost=1000.00..116776.94 rows=1 width=11) Workers Planned: 2 -> Parallel Seq Scan on bar (cost=0.00..115776.84 rows=1 width=11) Filter: (id = 5432) 3
4 .Selecting Data 2/2 CREATE TABLE foo(id INTEGER, name TEXT); Page 0/N Tuple - 1 Tuple - 2 INSERT INTO foo VALUES(1, 'Alex'); Tuple - 3 INSERT INTO foo VALUES(2, 'Bob'); Tuple - n Tuple - 1 Page 1/N Tuple - 2 Tuple - 3 SELECT ctid, * FROM foo; ctid | id | name -------+----+------ Tuple - n H Tuple - 1 Page 2/N E (0,1) | 1 | Alex Tuple - 2 A Tuple - 3 (0,2) | 2 | Bob P (2 rows) Tuple - n • How to select the data from the HEAP? • Need to scan each and every page and look for the Page N/N Tuple - 1 Tuple - 2 tuple in the page Tuple - 3 Cost? Tuple - n 4
5 .PostgreSQL Indexes https://www.postgresql.org/docs/current/indexes.html 5
6 .Why Index? • Indexes are entry points for tables • Index used to locate the tuples in the table • The sole reason to have an index is performance • Index is stored separately from the table’s main storage (PostgreSQL Heap) • More storage required to store the index along with original table postgres=# EXPLAIN SELECT name FROM bar WHERE id = 5432; QUERY PLAN ---------------------------------------------------------------------------- Seq Scan on bar (cost=0.00..159235.00 rows=38216 width=32) Filter: (id = 5432) postgres=# CREATE INDEX bar_idx ON bar(id); postgres=# EXPLAIN SELECT name FROM bar WHERE id = 5432; QUERY PLAN ---------------------------------------------------------------------------- Bitmap Heap Scan on bar (cost=939.93..64313.02 rows=50000 width=32) Recheck Cond: (id = 5432) -> Bitmap Index Scan on bar_idx (cost=0.00..927.43 rows=50000 width=0) Index Cond: (id = 5432) 6
7 .Index • PostgreSQL standard way to create a index (https://www.postgresql.org/docs/current/sql-createindex.html) postgres=# CREATE INDEX idx_btree ON bar(id); postgres=# SELECT relfilenode FROM pg_class WHERE relname LIKE ‘idx_btree’; relfilenode ------------- 16425 • PostgreSQL index has its own file on disk. The physical file on disk can be seen in the PostgreSQL $PGDATA directory. $ ls -lrt $PGDATA/13680/16425 -rw-------1 vagrant vagrant 1073741824 Apr 29 13:05 $PGDATA/base/13680/16425 7
8 .Creating Index 1/2 • Index based on single column of the table postgres=# CREATE INDEX bar_idx ON bar(id); postgres=# EXPLAIN SELECT name FROM bar WHERE id = 5432; QUERY PLAN ---------------------------------------------------------------------- Bitmap Heap Scan on bar (cost=939.93..64313.02 rows=50000 width=32) Recheck Cond: (id = 5432) -> Bitmap Index Scan on bar_idx (cost=0.00..927.43 rows=50000 width=0) Index Cond: (id = 5432) 8
9 .Creating Index 2/2 PostgreSQL locks the table when creating index CREATE INDEX idx_btree ON bar USING BTREE(id); CREATE INDEX Time: 12303.172 ms (00:12.303) CONCURRENTLY option creates the index without locking the table CREATE INDEX CONCURRENTLY idx_btree ON bar USING BTREE(id); CREATE INDEX Time: 23025.372 ms (00:23.025) 9
10 .Expression Index 1/2 EXPLAIN SELECT * FROM bar WHERE lower(name) LIKE 'Text1'; QUERY PLAN ------------------------------------------------------------- Seq Scan on bar (cost=0.00..213694.00 rows=50000 width=40) Filter: (lower((name)::text) ~~ 'Text1'::text) CREATE INDEX idx_exp ON bar (lower(name)); EXPLAIN SELECT * FROM bar WHERE lower(name) LIKE 'Text1'; QUERY PLAN ----------------------------------------------------------------------------- Bitmap Heap Scan on bar (cost=1159.93..64658.02 rows=50000 width=40) Filter: (lower((name)::text) ~~ 'Text1'::text) -> Bitmap Index Scan on idx_exp (cost=0.00..1147.43 rows=50000 width=0) Index Cond: (lower((name)::text) = 'Text1'::text) 1 0
11 .Expression Index 2/2 postgres=# EXPLAIN SELECT * FROM bar WHERE (dt + (INTERVAL '2 days')) < now(); QUERY PLAN --------------------------------------------------------------- Seq Scan on bar (cost=0.00..238694.00 rows=3333333 width=40) Filter: ((dt + '2 days'::interval) < now()) postgres=# CREATE INDEX idx_math_exp ON bar((dt + (INTERVAL '2 days'))); postgres=# EXPLAIN SELECT * FROM bar WHERE (dt + (INTERVAL '2 days')) < now(); QUERY PLAN ------------------------------------------------------------------------------------- Bitmap Heap Scan on bar (cost=62449.77..184477.10 rows=3333333 width=40) Recheck Cond: ((dt + '2 days'::interval) < now()) -> Bitmap Index Scan on idx_math_exp (cost=0.00..61616.43 rows=3333333 width=0) Index Cond: ((dt + '2 days'::interval) < now()) 1 1
12 .Partial Index Index Partial Index CREATE INDEX idx_full ON bar(id); CREATE INDEX idx_part ON bar(id) where id < 10000; EXPLAIN SELECT * FROM bar EXPLAIN SELECT * FROM bar WHERE id < 1000 WHERE id < 1000 AND name LIKE 'text1000’; AND name LIKE 'text1000’; QUERY PLAN QUERY PLAN ------------------------------------------------------------------------ ----------------------------------------------------------------------- -- Bitmap Heap Scan on bar (cost=199.44..113893.44 rows=16667 width=40) Bitmap Heap Scan on bar (cost=61568.60..175262.59 rows=16667 width=40) Recheck Cond: (id < 1000) Recheck Cond: (id < 1000) Filter: Q: What will happen when we query ((name)::text where id >1000? ~~ 'text1000'::text) Filter: ((name)::text ~~ 'text1000'::text) -> Bitmap Index Scan on idx_part (cost=0.00..195.28 rows=3333333 -> Bitmap Index Scan on idx_full (cost=0.00..61564.43 rows=3333333 width=0) width=0) A: Answer is simple, this index won’t selected. Index Cond: (id < 1000) Index Cond: (id < 1000) SELECT pg_size_pretty(pg_total_relation_size('idx_part')); SELECT pg_size_pretty(pg_total_relation_size('idx_full')); pg_size_pretty pg_size_pretty ---------------- ---------------- 240 kB 214 MB (1 row) (1 row) 12
13 . Index Types https://www.postgresql.org/docs/current/indexes-types.html 13
14 .B-Tree Index 1/2 • What is a B-Tree index? Wikipedia: (https://en.wikipedia.org/wiki/Self- • Supported Operators balancing_binary_search_tree) • Less than < In computer science, a self-balancing (or height-balanced) binary search tree • Less than equal to <= • Equal = is any node-based binary search tree that automatically keeps its height • Greater than equal to >= small in the face of arbitrary item insertions and deletions. • Greater than > CREATE INDEX idx_btree ON foo USING BTREE (name); postgres=# EXPLAIN ANALYZE SELECT * FROM foo WHERE name = 'text%'; QUERY PLAN ---------------------------------------------------------------------------------------------------------------- Index Scan using idx_btree on foo (cost=0.43..8.45 rows=1 width=19) (actual time=0.015..0.015 rows=0 loops=1) Index Cond: ((name)::text = 'text%'::text) Planning Time: 0.105 ms Execution Time: 0.031 ms (4 rows) 14
15 .B-Tree Index 2/2 CREATE TABLE foo(id INTEGER, name TEXT); Page 0/N Tuple - 1 Tuple - 2 INSERT INTO foo VALUES(1, 'Alex'); Tuple - 3 INSERT INTO foo VALUES(2, 'Bob'); Tuple - n SELECT ctid, * FROM foo; Tuple - 1 Page 1/N ctid | id | name Tuple - 2 Tuple - 3 -------+----+------ (0,1) | 1 | Alex (0,2) | 2 | Bob Tuple - n H Tuple - 1 Page 2/N E Tuple - 2 Tuple - 3 A P Index have the key and the location of the tuple. ctid | name Tuple - n -------+------ (0,1) | Alex Tuple - 1 (0,2) | Bob Page N/N Tuple - 2 (2,2) | Alex Tuple - 3 Tuple - n 15
16 .HASH Index • What is a Hash index? postgres=# \d bar Table "public.bar" • Hash indexes only handles equality operators Column | Type | Collation | Nullable | Default --------+-------------------+-----------+----------+--------- • Hash function is used to locate the tuples id name | integer | | character varying | | | | | dt | date | | | Indexes: CREATE INDEX idx_hash ON bar USING HASH (name); "idx_btree" btree (name) "idx_hash" btree (name) EXPLAIN ANALYZE SELECT * FROM bar WHERE name = 'text%'; QUERY PLAN Index Scan using idx_hash on bar (cost=0.43..8.45 rows=1 width=19) (actual time=0.023..0.023 rows=0 loops=1) Index Cond: ((name)::text = 'text%'::text) Planning Time: 0.080 ms Execution Time: 0.041 ms (4 rows) 16
17 .BRIN Index 1/2 • BRIN is a “Block Range Index” • Used when columns have some correlation with their physical location in the table • Space optimized because BRIN index contains only three items • Page number • Min value of column • Max value of column CREATE INDEX idx_btree ON bar USING BTREE (date); CREATE INDEX idx_hash ON bar USING HASH (date); CREATE INDEX idx_brin ON bar USING BRIN (date); 17
18 .BRIN Index 2/2 Sequential Scan BRIN Index postgres=# EXPLAIN ANALYZE SELECT * postgres=# EXPLAIN ANALYZE SELECT * FROM bar FROM bar WHERE dt > '2022-09-28’ WHERE dt > '2022-09-28’ AND dt < '2022-10-28'; AND dt < '2022-10-28'; QUERY PLAN QUERY PLAN ----------------------------------------------------- ------------------------------------------------------ Seq Scan on bar (cost=0.00..2235285.00 rows=1 Bitmap Heap Scan on bar (cost=92.03..61271.08 rows=1 width=27) width=27) (actual time=1.720..4.186 rows=29 loops=1) (actual time=0.139..7397.090 rows=29 Recheck Cond: ((dt > '2022-09-28 00:00:00’) loops=1) AND (dt < '2022-10-28 00:00:00')) Filter: ((dt > '2022-09-28 00:00:00) Rows Removed by Index Recheck: 18716 AND (dt < '2022-10-28 00:00:00)) Heap Blocks: lossy=128 Rows Removed by Filter: 99999971 -> Bitmap Index Scan on idx_brin Planning Time: 0.114 ms (cost=0.00..92.03 rows=17406 width=0) Execution Time: 7397.107 ms (actual time=1.456..1.456 rows=1280 loops=1) (5 rows) Index Cond: ((dt > '2022-09-28 00:00:00’) AND (dt < '2022-10-28 00:00:00')) Planning Time: 0.130 ms Execution Time: 4.233 ms (8 rows) 18
19 .GIN Index 1/2 • Generalized Inverted Index • GIN is to handle where we need to index composite values • Slow while creating the index because it needs to scan the document up front postgres=# \d bar Table "public.bar" Column | Type | Collation | Nullable | Default --------+---------+-----------+----------+--------- id | integer | | | name | jsonb | | | dt | date | | | postgres=# SELECT DISTINCT name, dt FROM bar LIMIT 5; name | dt ---------------------------------------------------------------------------+------------ {"name": "Alex", "phone": ["333-333-333", "222-222-222", "111-111-111"]} | 2019-05-13 {"name": "Bob", "phone": ["333-333-444", "222-222-444", "111-111-444"]} | 2019-05-14 {"name": "John", "phone": ["333-3333", "777-7777", "555-5555"]} | 2019-05-15 {"name": "David", "phone": ["333-333-555", "222-222-555", "111-111-555"]} | 2019-05-16 (4 rows) 19
20 .GIN Index 2/2 • Generalized Inverted Index • GIN is to handle where we need to index composite values • Slow while creating index because it needs to scan the document up front CREATE INDEX idx_gin ON bar USING GIN (name); postgres=# EXPLAIN ANALYZE SELECT * FROM bar postgres=# EXPLAIN ANALYZE SELECT * FROM bar WHERE name @> '{"name": "Alex"}’; WHERE name @> '{"name": "Alex"}'; QUERY PLAN QUERY PLAN ----------------------------------------------------- ----------------------------------------------------- Seq Scan on bar (cost=0.00..108309.34 rows=3499 Bitmap Heap Scan on bar (cost=679.00..13395.57 width=96) (actual time=396.019..1050.143 rows=1000000 rows=4000 width=96) (actual time=91.110..445.112 loops=1) rows=1000000 Even if you create a BTREE index, it won’t be loops=1) considered. Filter: (name @> '{"name": Because "Alex"}'::jsonb) it does not know the individual element in (name Recheck Cond: value. @> '{"name": "Alex"}'::jsonb) Rows Removed by Filter: 3000000 Heap Blocks: exact=16394 Planning Time: 0.107 ms -> Bitmap Index Scan on Execution Time: 1079.861 ms idx_gin (cost=0.00..678.00 rows=4000 width=0) (actual time=89.033..89.033 rows=1000000 loops=1) Index Cond: (name @> '{"name": "Alex"}'::jsonb) Planning Time: 0.168 ms Execution Time: 475.447 ms 20
21 .GiST Index • Generalized Search Tree • A GiST index is lossy • Tree-structured access method 21
22 .Where and What? • B-Tree: Use this index for most of the queries and different data types • Hash: Used for equality operators • BRIN: For really large sequentially lineup datasets • GIN: Used for documents and arrays • GiST: Used for full text search 22
23 .Index Only Scans • Index is stored separately from the table’s main storage (PostgreSQL Heap) • Query needs to scan both the index and the heap • Index Only Scans only used when all the columns in the query part of the index • In this case PostgreSQL fetches data from index only 23
24 .Index Only Scans CREATE INDEX idx_btree_ios ON bar (id,name); EXPLAIN SELECT id, name, dt FROM bar WHERE id > 100000 AND id <100010; QUERY PLAN Index Scan using idx_btree_ios on bar (cost=0.56..99.20 rows=25 width=19) Index Cond: ((id > 100000) AND (id < 100010)) (2 rows) EXPLAIN SELECT id, name FROM bar WHERE id > 100000 AND id <100010; QUERY PLAN Index Only Scan using idx_btree_ios on bar (cost=0.56..99.20 rows=25 width=15) Index Cond: ((id > 100000) AND (id < 100010)) (2 rows) 24
25 .Duplicate Indexes SELECT indrelid::regclass relname, indexrelid::regclass indexname, indkey FROM pg_index GROUP BY relname,indexname,indkey; relname | indexname | indkey --------------------------+-----------------------------------------------+--------- pg_index | pg_index_indexrelid_index | 1 pg_toast.pg_toast_2615 | pg_toast.pg_toast_2615_index | 1 2 pg_constraint | pg_constraint_conparentid_index | 11 SELECT indrelid::regclass relname, indkey, amname FROM pg_index i, pg_opclass o, pg_am a WHERE o.oid = ALL (indclass) AND a.oid = o.opcmethod GROUP BY relname, indclass, amname, indkey HAVING count(*) > 1; relname | indkey | amname ---------+--------+-------- bar | 2 | btree (1 row) 25
26 .Unused Indexes SELECT relname, indexrelname, idx_scan FROM pg_catalog.pg_stat_user_indexes; relname | indexrelname | idx_scan ---------+---------------+---------- foo | idx_foo_date | 0 bar | idx_btree | 0 bar | idx_btree_id | 0 bar | idx_btree_name| 6 bar | idx_brin_brin | 4 (7 rows) 26
27 . ? “Poor leaders rarely ask questions of themselves or others. Good leaders, on the other hand, ask many questions. Great leaders ask the great questions.” Michael Marquardt author of Leading with Questions 27
28 .Thank You to Our Sponsors
29 .Rate My Session 29