HOT

TensorFlow/TensorFlow.js/深度学习介绍

1 .Intro to Deep Learning, TensorFlow, and tensorflow.js JavaScript Meetup 09/11/2018 Shape Security Mountain View Oswald Campesato ocampesato@yahoo.com

2 . Highlights/Overview  intro to AI/ML/DL/NNs  Hidden layers  Initialization values  Neurons per layer  Activation function  cost function  gradient descent  learning rate  Dropout rate  what are CNNs  TensorFlow/tensorflow.js

3 .The Data/AI Landscape

4 . Use Cases for Deep Learning computer vision speech recognition image processing bioinformatics social network filtering drug design Recommendation systems Bioinformatics Mobile Advertising Many others

5 .NN 3 Hidden Layers: Classifier

6 .NN: 2 Hidden Layers (Regression)

7 .Classification and Deep Learning

8 .Euler’s Function (e: 2.71828. . .)

9 .The sigmoid Activation Function

10 .The tanh Activation Function

11 .The ReLU Activation Function

12 .The softmax Activation Function

13 . Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))

14 . What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs

15 . Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = slope of the best-fitting line b = y-intercept of the best-fitting line

16 .Linear Regression in 2D: example

17 .Linear Regression in 2D: example

18 .Sample Cost Function #1 (MSE)

19 . Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model

20 . Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)

21 . Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist

22 .Sample Cost Function #1 (MSE)

23 .Sample Cost Function #2

24 .Sample Cost Function #3

26 . Deep Neural Network: summary  input layer, multiple hidden layers, and output layer  nonlinear processing via activation functions  perform transformation and feature extraction  gradient descent algorithm with back propagation  each layer receives the output from previous layer  results are comparable/superior to human experts

27 . CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio Used in hybrid networks

28 .CNNs: Convolution, ReLU, and Max Pooling

29 . CNNs: Convolution Calculations  https://docs.gimp.org/en/plug-in-convmatrix.html

7 点赞
1 收藏
7下载 3秒后跳转登录页面