申请试用
HOT
登录
注册
 
苏宁 王止观 - 《无人店之人脸识别技术探讨》

苏宁 王止观 - 《无人店之人脸识别技术探讨》

青色的海牛
/
发布于
/
2027
人观看
随着深度学习的广泛发展,人脸识别的准确率有了巨大的飞跃。计算机通过自我学习得到的人脸特征更为可靠。将深度学习应用到人脸特征提取,使得人脸识别的精度有了进一步的提高。 VGGNet、GoogLeNet、ResNet是现今普遍流行的深度卷积神经网络(CNN)架构,基于这些架构训练出的的人脸识别模型,在公共数据集LFW(Labeled Face in the Wild)都得到了不错的效果。研究发现ResNet残差网络的结构可以加快收敛速率,提高训练速度和性能。而GoogleNet中的Inception模块,通过同一层中不同大小的卷积核可以得到不同尺度的特征。将GoogleNet中的Inception模块和ResNet相结合得到新的架构,可以进一步提高人脸识别模型的精确度。我们在此架构的基础上,训练出的新的人脸识别模型,在人脸识别公共数据集LFW达到了99.63%的准确率。
7 点赞
3 收藏
3下载
相关文档
确认
3秒后跳转登录页面
去登陆