- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
Stochastic SVD on Hadoop
展开查看详情
1 .Stochastic SVD on Hadoop Shannon Quinn (with thanks to Gunnar Martinsson and Nathan Halko of UC Boulder, and Joel Tropp of CalTech )
2 .Lecture breakdown Part I Stochastic SVD Part II Distributed stochastic SVD
3 .Part I: Stochastic SVD
4 .Basic goal Matrix A Find a low-rank approximation of A Basic dimensionality reduction Preconditioning
5 .Basic algorithm INPUT: A , k , p OUTPUT: Q Draw Gaussian n x (k + p) test matrix Ω Form product Y = AΩ Orthogonalize columns of Y Q
6 .Basic evaluation
7 .Approximating the SVD INPUT: Q OUTPUT: Singular vectors U Form k x n matrix B = Q T A Compute SVD of B = ÛΣV T Compute singular vectors U = QÛ
8 .Demo
9 .Empirical Results 1000x1000 matrix
10 .Power iterations Affects decay of eigenvalues / singular values
11 .Empirical Results
12 .Empirical Results
13 .Part II: Distributed SSVD
14 .Algorithm Overview QR factorization Power iteration QR factorization In-core SVD
15 .SSVD Primitives Matrix-vector multiplication: y = Ax (midterm, anyone?)
16 .SSVD Primitives Matrix-matrix multiplication: y = A T Ax
17 .Matrix-matrix multiplication Very clever use of map/reduce Each Mapper outputs:
18 .SSVD Primitives Distributed o rthogonalization : Y = AΩ Givens rotation Streaming QR Sliding window Merge factorizations Merge R Merge Q T
19 .SSVD 1 2 3 4 5
20 .1: Q-job
21 .2: B T -job
22 .3: AB T -job
23 .4: U-job
24 .5: V-job
25 .Mahout SSVD Parameters
26 .Block height
27 .Power iterations
28 .Comparison to Lanczos
29 .Comparison to Lanczos