申请试用
HOT
登录
注册
 
Image Super-Resolution Using DeepConvolutional Networ

Image Super-Resolution Using DeepConvolutional Networ

Reboot
/
发布于
/
1860
人观看
We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve tradeoffs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.
9 点赞
2 收藏
0下载
相关文档
确认
3秒后跳转登录页面
去登陆