申请试用
HOT
登录
注册
 
Conditional Image Synthesis with Auxiliary Classifier GANs

Conditional Image Synthesis with Auxiliary Classifier GANs

Reboot
/
发布于
/
1930
人观看
In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128 × 128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models.These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128 × 128 samples are more than twice as discriminable as artificially resized 32 × 32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.
3点赞
1收藏
0下载
相关推荐
确认
3秒后跳转登录页面
去登陆