申请试用
HOT
登录
注册
 
高保真自然图像合成的大规模GAN训练

高保真自然图像合成的大规模GAN训练

Jane
/
发布于
/
3264
人观看
尽管最近在生成图像建模方面取得了进展,但是从像ImageNet这样的复杂数据集中成功生成高分辨率,多样化的样本仍然是一个难以实现的目标。为此,我们以最大规模训练了生成性对抗网络,并研究了这种规模所特有的不稳定性。我们发现将正交正则化应用于生成器使得它适合于简单的“截断技巧”,允许通过截断潜在空间来精确控制样本保真度和多样性之间的权衡。我们的修改导致模型在类条件图像合成中达到了新的技术水平。当我们在ImageNet上以128×128分辨率进行训练时,我们的模型(BigGAN)的初始得分(IS)为166.3,Frechet初始距离(FID)为9.6,比之前的最优IS为52.52,FID为18.65有了显著的提升。
12点赞
2收藏
0下载
相关推荐
确认
3秒后跳转登录页面
去登陆