- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
Images and Filters
展开查看详情
1 .Images and Filters EE/CSE 576 Linda Shapiro
2 .What is an image? 2
3 .3
4 .4 We sample the image to get a discrete set of pixels with quantized values. 2. For a gray tone image there is one band F( r,c ), with values usually between 0 and 255. 3. For a color image there are 3 bands R( r,c ), G( r,c ), B( r,c )
5 .F ( ) = Image Operations (functions of functions) 5
6 .F ( ) = Image Operations (functions of functions) 6
7 .F ( ) = Image Operations (functions of functions) 0.1 0 0.8 0.9 0.9 0.9 0.2 0.4 0.3 0.6 0 0 0.1 0.5 0.9 0.9 0.2 0.4 0.3 0.6 0 0 0.1 0.9 0.9 0.2 0.4 0.3 0.6 0 0 0.1 0.5 7
8 .F ( , ) = Image Operations (functions of functions) 8
9 .Local image functions F ( ) = 9
10 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Credit: S. Seitz Image filtering 1 1 1 1 1 1 1 1 1 10
11 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz 11
12 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz 12
13 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz 13
14 .0 10 20 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz 14
15 .0 10 20 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz ? 15
16 .0 10 20 30 30 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz ? 16
17 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 30 30 30 20 10 0 20 40 60 60 60 40 20 0 30 60 90 90 90 60 30 0 30 50 80 80 90 60 30 0 30 50 80 80 90 60 30 0 20 30 50 50 60 40 20 10 20 30 30 30 30 20 10 10 10 10 0 0 0 0 0 Image filtering 1 1 1 1 1 1 1 1 1 Credit: S. Seitz 17
18 .What does it do? Replaces each pixel with an average of its neighborhood Achieve smoothing effect (remove sharp features) 1 1 1 1 1 1 1 1 1 Slide credit: David Lowe (UBC) Box Filter 18
19 .Smoothing with box filter 19
20 .Practice with linear filters 0 0 0 0 1 0 0 0 0 Original ? Source: D. Lowe 20
21 .Practice with linear filters 0 0 0 0 1 0 0 0 0 Original Filtered (no change) Source: D. Lowe 21
22 .Practice with linear filters 0 0 0 1 0 0 0 0 0 Original ? Source: D. Lowe 22
23 .Practice with linear filters 0 0 0 1 0 0 0 0 0 Original Shifted left By 1 pixel Source: D. Lowe 23
24 .Practice with linear filters Original 1 1 1 1 1 1 1 1 1 0 0 0 0 2 0 0 0 0 - ? Source: D. Lowe 24
25 .Practice with linear filters Original 1 1 1 1 1 1 1 1 1 0 0 0 0 2 0 0 0 0 - Sharpening filter Accentuates differences with local average Source: D. Lowe 25
26 .Sharpening Source: D. Lowe 26
27 .Other filters -1 0 1 -2 0 2 -1 0 1 Vertical Edge (absolute value) Sobel 27
28 .Other filters -1 -2 -1 0 0 0 1 2 1 Horizontal Edge (absolute value) Sobel 28
29 .Basic gradient filters 0 0 0 1 0 -1 0 0 0 0 -1 0 0 0 0 0 1 0 1 0 -1 or Horizontal Gradient Vertical Gradient 1 0 -1 or 29