# зГ≠еє≥и°°еПКиљљжµБе≠РжµУеЇ¶

е±ХеЉАжЯ•зЬЛиѓ¶жГЕ

1. Lecture #3 OUTLINE вАҐ Thermal equilibrium вАҐ Fermi-Dirac distribution вАУ Boltzmann approximation вАҐ Relationship between EF and n, p вАҐ Temperature dependence of EF, n, p Finish reading Chapter 2 Spring 2003 EE130 Lecture 3, Slide 1 Review: Energy Band Model and Doping Spring 2003 EE130 Lecture 3, Slide 2 1

2.Spring 2003 EE130 Lecture 3, Slide 3 Important Constants вАҐ Electronic charge, q вАҐ Permittivity of free space, ќµo вАҐ Boltzmann constant, k вАҐ Planck constant, h вАҐ Free electron mass, mo вАҐ Thermal voltage kT/q Spring 2003 EE130 Lecture 3, Slide 4 2

3. Thermal Equilibrium вАҐ No external forces applied: вАУ electric field = 0 вАУ magnetic field = 0 вАУ mechanical stress = 0 вАҐ Thermal agitation вАУ> electrons and holes exchange energy with the crystal lattice and each other вЗТ Every energy state in the conduction and valence bands has a certain probability of being occupied by an electron Spring 2003 EE130 Lecture 3, Slide 5 Analogy for Thermal Equilibrium Sand particles Dish Vibrating table вАҐ There is a certain probability for the electrons in the conduction band to occupy high-energy states under the agitation of thermal energy (vibrating atoms, etc.) Spring 2003 EE130 Lecture 3, Slide 6 3

4. Fermi Function Probability that an available state at energy E is occupied: 1 f (E) = 1 + e( E вИТ EF ) / kT EF is called the Fermi energy or the Fermi level There is only one Fermi level in a system at equilibrium. Spring 2003 EE130 Lecture 3, Slide 7 Effect of Temperature on f(E) Spring 2003 EE130 Lecture 3, Slide 8 4

5. Boltzmann Approximation If E вИТ E F > 3kT , f ( E ) вЙИ e вИТ ( E вИТ EF ) kT If E F вИТ E > 3kT , f ( E ) вЙИ 1 вИТ e E вИТ EF kT Spring 2003 EE130 Lecture 3, Slide 9 Density of States E gc(E) вИЖќХ Ec Ec Ev Ev gv(E) g(E)dE = number of states per cm3 in the energy range between E and E+dE Near the band edges: mn* 2mn* (E вИТ Ec ) gc ( E ) = E вЙ• Ec ѕА 2h 3 m*p 2m*p (Ev вИТ E ) gv ( E ) = E вЙ§ Ev ѕА 2h 3 Spring 2003 EE130 Lecture 3, Slide 10 5

6. Equilibrium Distribution of Carriers вАҐ Obtain n(E) by multiplying gc(E) and f(E) вАҐ Obtain p(E) by multiplying gv(E) and 1-f(E) Spring 2003 EE130 Lecture 3, Slide 11 Equilibrium Carrier Concentrations вАҐ Integrate n(E) over all the energies in the conduction band to obtain n top of conduction band n=вИЂ g c ( E ) f ( E )dE Ec вАҐ By using the Boltzmann approximation, and extending the integration limit to вИЮ, we obtain 3/ 2 п£Ђ 2ѕАmn*kT п£ґ n = N c e вИТ( Ec вИТ EF ) / kT where N c = 2п£ђп£ђ 2 п£Јп£Ј п£≠ h п£Є Spring 2003 EE130 Lecture 3, Slide 12 6

7.вАҐ Integrate p(E) over all the energies in the valence band to obtain p g v ( E )[1 вИТ f ( E )]dE Ev p=вИЂ bottom of valence band вАҐ By using the Boltzmann approximation, and extending the integration limit to -вИЮ, we obtain 3/ 2 п£Ђ 2ѕАm*p kT п£ґ p = N ve вИТ ( E F вИТ Ev ) / kT where N v = 2п£ђп£ђ 2 п£Ј п£Ј п£≠ h п£Є Spring 2003 EE130 Lecture 3, Slide 13 Intrinsic Carrier Concentration ni Multiply n = N c e вИТ ( Ec вИТ E F ) / kT and p = N v e вИТ ( EF вИТ Ev ) / kT вИТ E g / kT np = N c N v e вИТ ( Ec вИТ Ev ) / kT = N c N v e 2 Recall that np = ni вИТ E g / 2 kT ni = N c N v e Spring 2003 EE130 Lecture 3, Slide 14 7

8. Intrinsic Fermi Level вАҐ To find EF for an intrinsic semiconductor (n = p = ni): n = N c e( Ei вИТ EC ) / kT = N v e( EV вИТ Ei ) / kT = p EC + EV kT п£Ђ NV п£ґ Ei = + lnп£ђ п£Ј 2 2 п£ђп£≠ N C п£Јп£Є EC + EV 3kT п£Ђп£ђ m p п£ґп£Ј * Ei = + lnп£ђ * п£Ј 2 4 п£≠ mn п£Є Spring 2003 EE130 Lecture 3, Slide 15 n(ni, EF) and p(ni, EF) Spring 2003 EE130 Lecture 3, Slide 16 8

9. Shifting the Fermi Level Spring 2003 EE130 Lecture 3, Slide 17 Example: Energy-band diagram Question: Where is EF for n = 1x1017 cm-3? Spring 2003 EE130 Lecture 3, Slide 18 9

10.Carrier Concentration vs. Temperature intrinsic regime n = ND ln n вАЬfreeze-outвАЭ regime 1/T high room cryogenic temp. temperature temperature Spring 2003 EE130 Lecture 3, Slide 19 Dependence of EF on Temperature Ec 300K 400K ed nor-dop Ef, Do Ef , Acce ptor-dop ed 400K 300K Ev 1013 1014 1015 1016 1017 1018 1019 1020 N A or N D (cm-3) Spring 2003 EE130 Lecture 3, Slide 20 10

11. Dopant Ionization Q: Nd = 1017 cm-3. What fraction of the donors are not ionized? Solution: First assume that all the donors are ionized. n = N D = 1017 cm вИТ3 вЗТ E f = Ec вИТ 146meV 45meV 146 meV Ed Ec EF Ev 1 1 Probability of non-ionization вЙИ = = 0.02 1 + e( Ed вИТ EF ) / kT 1 + e((146вИТ45) meV ) / 26 meV Therefore, it is reasonable to assume complete ionization, i.e., n = ND Spring 2003 EE130 Lecture 3, Slide 21 Summary Thermal equilibrium: Balance between internal processes with no external stimulus (no electric field, no light, etc.) => Electron-hole pair (EHP) generation rate = EHP recombination rate вАҐ Fermi function: probability that a state at energy E is filled with an electron under equilibrium conditions: 1 f (E) = ( E вИТ E F ) / kT 1+ e вАУ Boltzmann approximation: For high E, i.e. E - EF > 3kT: f ( E ) вЙЕ e вИТ ( E вИТ EF ) / kT For low E, i.e. EF вАУ E > 3kT: 1 вИТ f ( E ) вЙЕ e вИТ ( E F вИТ E ) / kT Spring 2003 EE130 Lecture 3, Slide 22 11

12. n = N c e вИТ ( Ec вИТ EF ) / kT = ni e( EF вИТ Ei ) / kT p = N v e вИТ ( EF вИТ Ev ) / kT = ni e( Ei вИТ EF ) / kT Spring 2003 EE130 Lecture 3, Slide 23 12

жИСе∞±жШѓжИСпЉБ
еЈ≤е∞ЖйУЊжО•е§НеИґиЗ≥еЙ™иііжЭњ