- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
智能驾驶深度报告:仰望天空与脚踏实地
智能驾驶以“服务人”、“替代人”为目标,价值包含:安全、高效、舒适。智能驾驶产品可分为两类:辅助驾驶产品由人对驾驶行为负责;自动(无人)驾驶产品由系统承担部分或者全部责任。当前,我们依然处在辅助驾驶阶段,并正向自动驾驶产品演进。
不同应用场景,用户需求有差异,这将会影响智能驾驶功能的接受度与普及速度。我们认为:(1)安全相关的智能驾驶功能需求刚性,如:AEB、FCW等功能;(2)显性价值清晰、能够解决用户痛点的智能驾驶功能市场接受度高,如:节油、自动泊车等功能。(3)个性化的智能驾驶功能接受度的价格弹性较大,如:自动变道、座舱HUD等功能。
展开查看详情
1 .a T Tabl e_First|Tabl e_Summary Tabl e_First|T abl e_R eportD ate 2021 年 05 月 27 日 证 Tabl e_First|Tabl e_Rati ng 券 研 智能驾驶深度报告:仰望天空与脚踏实地 投资建议: 中性 究 报 告 汽车行业 上次建议: 中性 Tabl e_First|T abl e_C hart 投资要点: 一年内行业相对大盘走势 100.00% ➢ 智能驾驶的价值与发展阶段 汽车(申万) 沪深300 80.00% 智能驾驶以“服务人”、“替代人”为目标,价值包含:安全、高效、舒适。 60.00% 40.00% 智能驾驶产品可分为两类:辅助驾驶产品由人对驾驶行为负责;自动(无 20.00% 人)驾驶产品由系统承担部分或者全部责任。当前,我们依然处在辅助驾 0.00% 20-10 20-05 20-06 20-07 20-08 20-09 20-11 20-12 21-01 21-02 21-03 21-04 21-05 行 驶阶段,并正向自动驾驶产品演进。 业 深 ➢ 产品功能与应用场景的匹配程度影响用户需求 度 不同应用场景,用户需求有差异,这将会影响智能驾驶功能的接受度与普 研 究 及速度。我们认为:(1)安全相关的智能驾驶功能需求刚性,如: AEB、FCW等功能;(2)显性价值清晰、能够解决用户痛点的智能驾驶 功能市场接受度高,如:节油、自动泊车等功能。(3)个性化的智能驾 驶功能接受度的价格弹性较大,如:自动变道、座舱HUD等功能。 ➢ 三力合一,加速智能驾驶发展;标杆已至,智能驾驶进入成长期 Tabl e_First|Tabl e_Author 张旭 分析师 (1)国家、地方、行业全方位的政策鼓励与支持;(2)供给端:传感 执业证书编号:S0590521050001 器、计算机、通讯技术等逐渐成熟,产品成本下降,智能驾驶功能越来越 电话:0510-85613713 丰富;(3)特斯拉树立行业标杆,智能电动汽车已经深入人心。 邮箱:zxu@glsc.com.cn 智能驾驶已由导入期进入成长期,产品推出速度正在加快。未来,智能驾 Tabl e_First|Tabl e_Contacter 驶功能将会越来越多,渗透率越来越高。 ➢ 产业机会:仰望天空与脚踏实地兼顾,存量与增量机会并存 因为辅助驾驶向自动驾驶演进的节奏存在不确定性,在保持商业战略前瞻 性的同时也应该关注产品的落地情况。 整车端是牵引:L3/L4级自动驾驶需要依托场景,商用车:有望率先落 刘斌 联系人 电话:0510-85607670 地,未来3年将是关键,建议关注相关科技公司。乘用车:智能电车将会 邮箱:liubin@glsc.com.cn 先行,产品功能与用户需求相匹配才能提高用户付费意愿。 Tabl e_First|Tabl e_Rel ateRepor t 零件端是支撑:当前,我国缺乏零部件Tier1,建议关注华为布局。其他 相关报告 本土零部件企业分享智能驾驶红利的路径为:(1)存量零部件(毫米波 1、《市场复苏持续,聚焦产业升级路径》 雷达、摄像头、普通控制器等):从独立功能切入,国产替代有机会; 《汽车》 2、《行稳致远:自主再起,智车已来》 2021.05.05 (2)增量零部件(智能座舱、激光雷达、域控制器与计算平台等):降 《汽车》 低成本,提升集成与服务能力,成为Tier1是关键;(3)壁垒零部件(高 2021.01.13 精地图、网联模块):外资进入有壁垒,本土企业为主导。 在公司层面,建议关注零部件公司进入先进国际整车平台的能力。 服务与测试端是保障:推动产品落地,分享红利,确定性高,建议关注。 ➢ 风险提示 汽车销量不及预期;智能驾驶技术发展不及预期;智能驾驶产品开发进度 不及预期;法规与技术标准推出不及预期;供应链风险。 请务必阅读报告末页的重要声明 1
2 . 行业深度研究 正文目录 1 我们为什么需要智能驾驶? .............................................. 7 1.1 智能驾驶简介:服务人与代替人 ................................................................ 7 1.2 智能驾驶的功能价值:安全、高效、舒适 .................................................. 7 1.3 智能驾驶的经济价值:重构产业的革命 ..................................................... 8 1.4 智能驾驶技术分级与产品 ........................................................................... 9 2 市场需求:产品功能与应用场景的匹配程度影响用户需求 ................... 12 2.1 ADAS(辅助驾驶):产品成熟,功能不断丰富 ........................................... 12 2.2 L3/L4(自动驾驶):场景决定市场空间与落地节奏 .................................... 13 2.3 产品功能价值决定需求弹性...................................................................... 15 3 政策、技术、标杆共同推动,智能驾驶加速到来 ........................... 18 3.1 政策支持:国家战略方向;地方大力扶持;行业积极响应 ...................... 18 3.2 技术进步:感知/智能/通讯技术导入 ......................................................... 19 3.3 标杆引领:特斯拉引领智驾体验 .............................................................. 22 3.4 标杆引领:商用车龙头寻求开辟新大陆 ................................................... 24 4 智能驾驶产业链分析:增量零部件与产业重构带来机会 ..................... 26 4.1 当前:智能驾驶产业链分工与合作,集成能力是关键 ............................. 26 4.2 未来:产业链重构,增量部件价值高 ....................................................... 29 4.3 感知层: 确定的增量市场,期待国产放量................................................. 35 4.4 执行层:底盘电控壁垒高,动力升级有机会 ............................................ 51 4.5 决策层(控制器与计算平台):国产替代与增量机会并存 ........................ 55 4.6 人机交互:智能座舱对接用户 .................................................................. 63 5 投资建议 ............................................................ 70 6 风险提示 ............................................................ 73 图表目录 图表 1:智能驾驶:服务人与代替人 ............................................................................... 7 图表 2:智能驾驶功能的价值 .......................................................................................... 8 图表 3:汽车行业“新四化”是全方位的革命 .................................................................... 8 图表 4: 软件定义汽车:通过软件持续优化与改变 .......................................................... 8 图表 5:SAE 智能驾驶分级定义:自动驾驶是高等级的智能驾驶 .................................. 9 图表 6:从产品属性来看,智能驾驶分为两类产品 ......................................................... 9 图表 7:不同公司的产品开发战略选择 ............................................................................ 9 图表 8:完全达到高等级智能驾驶(L4 自动驾驶)还是需要较长的时间 ..................... 10 图表 9:Waymo 处于自动驾驶领先位置 ....................................................................... 10 图表 10:自动驾驶面临长尾效应:难以覆盖全面 ......................................................... 10 图表 11:各国通向自动驾驶的战略选择 ........................................................................ 11 图表 12:我国强调智能化与网联化协同发展 ................................................................ 11 图表 13:常见乘用车 ADAS 功能、价值及其工作原理................................................. 12 图表 15:乘用车常见 ADAS 功能.................................................................................. 13 图表 16:商用车 ADAS 系统构成.................................................................................. 13 图表 17:典型的智能驾驶使用场景 ............................................................................... 13 图表 18:应用场景决定市场空间(百亿元) ................................................................ 13 图表 19:国内自动驾驶领域投资波动 ........................................................................... 14 2 请务必阅读报告末页的重要声明
3 . 行业深度研究 图表 20:港口集装箱卡车与末端配送小车 .................................................................... 14 图表 21:L3 以上的自动驾驶开发:各公司选定主攻场景............................................. 14 图表 22:ADAS/AD(主动安全)相关标准计划 ........................................................... 15 图表 23:乘用车对 AEB 搭载与性能要求越来越高 ....................................................... 15 图表 24:主动安全功能被引入商用车管理法规 ............................................................. 15 图表 25:“两客一危”安全监管大量应用辅助驾驶 ......................................................... 15 图表 26:自动泊车功能解决用户痛点 ........................................................................... 16 图表 27:ACC 功能缓解驾驶员跟车疲劳 ...................................................................... 16 图表 28:自动驾驶卡车将在多个环节为用户节约成本 .................................................. 16 图表 29:商用车智能驾驶产品价值较为显性 ................................................................ 16 图表 30:智能座舱功能带来个性化体验 ........................................................................ 17 图表 31:用户对车载导航地图支付意愿不强 ................................................................ 17 图表 32:ADAS 功能体验调查,用户满意度不高 ......................................................... 17 图表 33:用户对智能驾驶兴趣度高,支付意愿不强 ..................................................... 17 图表 34:我国智能网联汽车标准体系框架 .................................................................... 18 图表 35:ADAS 基本功能标准体系已经建立 ................................................................ 18 图表 36:行业对于产品测试评价达成共识 .................................................................... 19 图表 37:2021 年,智能网联汽车质检中心获批 ........................................................... 19 图表 38:车辆感知识别的内容 ...................................................................................... 19 图表 39:激光雷达在汽车上的应用 ............................................................................... 19 图表 40:Moblieye 以算法与芯片成为行业龙头 ........................................................... 20 图表 41:计算能力提升满足高等级智能驾驶需求 ......................................................... 20 图表 42:“人-车-路-云”相互连接,构建未来智慧交通体系 .......................................... 21 图表 43:智慧基站承担路段感知、通讯、计算功能 ..................................................... 21 图表 44:特斯拉汽车连续高速增长 ............................................................................... 22 图表 45:智能驾驶功能是特斯拉宣传重点 .................................................................... 22 图表 46:国产品牌对标特斯拉智能驾驶功能与配置 ..................................................... 22 图表 47:乘用车市场自动泊车功能搭载仍然较低 ......................................................... 23 图表 48:全球 ADAS 市场预测 2019-2027 .................................................................. 23 图表 49:我国乘用车部分 ADAS 配置变化情况:虽然逐年增高,但大部分功能低于 20% 搭载率 ..................................................................................................................... 23 图表 50:我国物流费用占 GDP 比重较高 ..................................................................... 24 图表 51:通过车联网技术能够有效节约运输成本 ......................................................... 24 图表 52:随着自动驾驶重卡发展,整车企业的价值领域将会大幅拓展 ........................ 24 图表 53:一汽解放已通过哥伦布计划布局智能驾驶、后市场、车联网 ........................ 25 图表 54:智能驾驶整车厂(OEM)与供应商的分工与合作 ......................................... 26 图表 55:ADAS 级别智能驾驶产业链上下游:主机厂处于顶层,处于主导位置 ......... 26 图表 56:我国 ADAS 市场增长迅速 .............................................................................. 27 图表 57:部分公司 ADAS 业务收入比较(2019 年) ....................................................... 27 图表 58:部分零部件企业在智能驾驶领域的布局:国际公司优势明显 ........................ 27 图表 59:全球零部件 TOP10 均能承担 Tier1 角色 ....................................................... 28 图表 60:汽车软件与 EEA 的价值量将会持续提升 ....................................................... 29 图表 61:电子电气架构升级也是组织重构的过程 ......................................................... 29 图表 62:汽车软件与其他软件对比:代码量巨大 ......................................................... 29 图表 63:对标特斯拉,大众汽车提升软件自研率 ......................................................... 30 图表 64: 汽车企业需要更多的软件人才与 IT 专家 ........................................................ 30 图表 65:整车企业积极与科技公司合作 ........................................................................ 30 3 请务必阅读报告末页的重要声明
4 . 行业深度研究 图表 66:国际整车企业抱团研究 L4 级智能驾驶 .......................................................... 30 图表 67:芯片、算法将成为未来智能驾驶的核心零部件,价值节点发生转移 ............. 31 图表 68:应对软件定义汽车,整车企业的组织架构将会发生转变 ............................... 31 图表 69:行业变革下的各方需求与痛点:传统国际 Tier1 面临双重挤压 ..................... 31 图表 70:国际汽车 Tier1 供应商拆分与并购,应对技术变革 ....................................... 32 图表 71:高等级智能驾驶实现共享出行,构建新型生态网络 ....................................... 32 图表 72:汽车价值链重构:通过软件实现价值链向中后段转移 ................................... 32 图表 73:商用车干线物流领域合作模式 ........................................................................ 33 图表 74:自动驾驶公司(图森未来 TSP.O)对于智能物流网络体系构想及商业模式 . 33 图表 75:华为进入汽车领域,目标成为头部 Tier1 ....................................................... 34 图表 76:我国整车企业进入正向研发突破阶段 ............................................................. 34 图表 77:雷达、超声波、摄像头各有优劣 .................................................................... 35 图表 78:雷达、超声波、摄像头对应功能 .................................................................... 35 图表 79:主要感知传感器原理及比较 ........................................................................... 35 图表 80:智能驾驶等级越高传感器搭载数量与种类将会越多 ....................................... 36 图表 81:不同智能驾驶级别的传感器方案估算(元) .................................................. 36 图表 82:视觉系统产业链(前视摄像头为例) ............................................................. 37 图表 83:ZF 前视三目摄像头成本分拆 .......................................................................... 37 图表 84:摄像头涉及到的芯片供应商 ........................................................................... 37 图表 85:Mobileye 占前视方案市场主导地位............................................................... 37 图表 86:2018 至 2020 年,汽车 CMOS 市场份额....................................................... 38 图表 87:全球车载视觉系统市场规模 ........................................................................... 38 图表 88:车载摄像头分类及功能 ................................................................................... 38 图表 89:车载摄像头产业链部分参与企业 .................................................................... 39 图表 90:车载摄像头种类及国产机会:360 全景影像、疲劳监测、盲区监测等视觉领域 产品有望突破 .......................................................................................................... 39 图表 91:汽车毫米波雷达工作原理 ............................................................................... 40 图表 92:汽车毫米波雷达结构 ...................................................................................... 40 图表 93:大陆 ARS4-B 毫米波雷达主要芯片供应商 ..................................................... 40 图表 94:Infineon 提供的 77/79GHz 的芯片方案 ......................................................... 40 图表 95:典型车载雷达系统搭配(1+2+2) ................................................................. 41 图表 96:未来 77GHz 和 79GHz 是趋势 ....................................................................... 41 图表 97:我国毫米波雷达市场快速增长 ........................................................................ 41 图表 98:全球毫米波雷达市场格局(2018)................................................................ 41 图表 99:汽车雷达定点与开发周期较长 ........................................................................ 42 图表 100:保隆科技毫米波雷达产品介绍 ...................................................................... 42 图表 101:视觉+毫米波雷达方案有局限性.................................................................... 43 图表 102:激光雷达获取点云进行测距和物体识别 ....................................................... 43 图表 103:激光雷达聚焦五大核心部件:技术分支多,尚未收敛 ................................. 43 图表 104:测距原理:ToF 是目前的技术主流 .............................................................. 44 图表 105:激光雷达按照扫描方式有无机械转动部件可以分为机械旋转、混合固态、纯固 态 ............................................................................................................................ 44 图表 106:激光雷达向固态化发展与部分公司布局 ....................................................... 45 图表 107:VCSEL 较 EEL 在光束质量上存在优势 ....................................................... 46 图表 108:VCSEL 在成本和可靠性方面存在优势......................................................... 46 图表 109:车用激光雷达产品核心点 ............................................................................. 46 图表 110:禾赛科技激光雷达 ........................................................................................ 46 4 请务必阅读报告末页的重要声明
5 . 行业深度研究 图表 111:各大车企正在加快激光雷达的搭载:激光雷达供应商选择备受关注 ............ 47 图表 112:激光雷达主要性能参数 ................................................................................. 47 图表 113:不同应用场景,对激光雷达有不同的性能要求 ............................................ 48 图表 114:激光雷达成本下降非常关键.......................................................................... 48 图表 115:Tier1 对于激光雷达积极布局 ....................................................................... 48 图表 116:地图与其他传感器感知距离比较 .................................................................. 49 图表 117:不同等级的智能驾驶对地图的要求............................................................... 49 图表 118:高等级智能驾驶定位方法 ............................................................................. 49 图表 119:车规级 GNSS/IMU 产品 ............................................................................... 49 图表 120:不同车载定位方式对比 ................................................................................. 50 图表 121:2017 年国内电动转向(EPS)市场格局 ..................................................... 51 图表 122:2017 年国内(ESC)市场格局 .................................................................... 51 图表 123:博世 Servolectric 电子助力转向系统 ......................................................... 52 图表 124:博世 iBooster 智能制动系统 ....................................................................... 52 图表 125:博世车身稳定系统(ESC)组成及原理 ............................................................ 52 图表 126:国际厂商在底盘控制领域布局深厚 .............................................................. 53 图表 127:AMT 实现了动力输出智能控制 .................................................................... 53 图表 128: 智能驾驶实现省油功能 ................................................................................. 53 图表 129:欧美 AMT 变速箱用了 15 年实现普及 .......................................................... 54 图表 130:中国重卡(牵引车)AMT 快速增长 ............................................................. 54 图表 131:汽车控制器原理 ............................................................................................ 55 图表 132:汽车软件与硬件分离趋势确定 ...................................................................... 55 图表 133:汽车电子控制单元(ECU)产业链 .............................................................. 55 图表 134:科博达车灯控制器进入国际整车厂平台 ....................................................... 55 图表 135:博世域控制器 DASy ..................................................................................... 56 图表 136:大陆汽车动力域控制器(PDU)产品布局 ........................................................ 56 图表 137:座舱域控制架构“一芯多屏” ......................................................................... 56 图表 138:智能座舱域的功能安全标准相对较低 ........................................................... 56 图表 139:座舱域控制器供应商及其产品 ...................................................................... 57 图表 140:国产芯片在座舱域控制器领域获得突破 ....................................................... 57 图表 141:全球汽车座舱域控制器出货量预测 .............................................................. 57 图表 142:ZF(采埃孚)ProAI 的四代产品 ................................................................. 58 图表 143:德赛西威 ADAS/AD 域控制器...................................................................... 58 图表 144:ADAS/AD 域控制器供应商及其产品............................................................ 58 图表 145:车载智能计算基础平台参考架构:未来产业链分工围绕计算平台展开 ....... 59 图表 146:智能驾驶的车载计算平台能够让 Tier1\Tier2\ICT 等企业跨界整合 ............. 59 图表 147:部分车载计算平台比较 ................................................................................. 60 图表 148:特斯拉智能驾驶控制器(FSD) .................................................................. 60 图表 149:华为 MDC 展现其在智能汽车上布局............................................................ 60 图表 150:车规级芯片开发周期长 ................................................................................. 61 图表 151:国产地平线芯片产品规划 ............................................................................. 61 图表 152:芯驰科技产品布局 ........................................................................................ 61 图表 153:本土芯片企业加强与下游车企合作 .............................................................. 61 图表 154:域控制器与计算平台市场规模预测 .............................................................. 62 图表 155:2020 年至 2030 年汽车软件价值分解 .......................................................... 62 图表 156:2020 年至 2030 年汽车软件增速预测:OS 和娱乐网联部分增速较高 ........ 62 图表 157:智能座舱整体结构 ........................................................................................ 63 5 请务必阅读报告末页的重要声明
6 . 行业深度研究 图表 158:智能座舱主要构成 ........................................................................................ 63 图表 159:虚拟系统对于实现智能座舱至关重要 ........................................................... 63 图表 160:中控液晶屏搭载率已较高(%) .................................................................. 64 图表 161:液晶仪表盘搭载率提升有潜力(%) ........................................................... 64 图表 162:HUD 搭载率还较低(%) ............................................................................ 64 图表 163:10~20 万车型 液晶仪表搭载对比 ................................................................ 64 图表 164:中国市场液晶仪表盘市场规模预测 .............................................................. 65 图表 165:中国市场抬头显示市场规模预测 .................................................................. 65 图表 166:车载中控娱乐市场格局分散 ......................................................................... 65 图表 167:液晶仪表市场集中度高 ................................................................................. 65 图表 168:车用液晶仪表产业链中的主要公司 .............................................................. 66 图表 169:中控屏产业链中的主要公司 ......................................................................... 66 图表 170:智能座舱“一芯多屏”系统架构非常重要 ....................................................... 66 图表 171:智能座舱产业链结构:有望出现座舱 Tier1 ................................................. 67 图表 172:Tier1 通过集成化座舱电子产品获取更高的单车价值( ASP) ............. 67 图表 173:国内外企业在智能座舱领域布局比较 ........................................................... 68 图表 174:理想 ONE 智能座舱由德赛西威集成 ............................................................ 68 图表 175:智己汽车智能座舱整车厂主导较多 .............................................................. 68 图表 176:DMS 主要功能.............................................................................................. 69 图表 177:DMS 组成及工作原理 ................................................................................... 69 图表 178:不同智能驾驶功能渗透率提高趋势明确 ....................................................... 70 图表 179:未来 3 年将是自动驾驶产品商业化落地的关键时刻..................................... 71 图表 180:从产业维度看当前智能驾驶领域投资机会 ................................................... 71 6 请务必阅读报告末页的重要声明
7 . 行业深度研究 1 我们为什么需要智能驾驶? 1.1 智能驾驶简介:服务人与代替人 智能驾驶是指汽车通过配置先进的传感器、控制器、执行器、通讯模块等设备实 现协助驾驶员对车辆的操控,甚至完全代替驾驶员实现无人驾驶的功能。 高等级的智能驾驶是智能交通体系的一部分,通过 V2X(车联网)技术汽车能够 与道路信息、交通信号、其他车辆等周围环境联接为一体,形成“人、车、路”高效运 行的交通体系。而在智能汽车内部,各种类型的传感器代替了人的眼睛与耳朵,感知 汽车周围情况;强大算力的控制器代替了人的大脑,决策车辆行驶路线;响应灵敏的 执行器代替了人的手脚,执行着智能大脑的命令。被“代替”的驾驶员则通过全新的人 机交互环境,享受着智能的体验与服务。这是智能驾驶的愿景,也是定义各个子功能 的发展目标。 图表 1:智能驾驶:服务人与代替人 来源:网络资料,国联证券研究所 1.2 智能驾驶的功能价值:安全、高效、舒适 安全始终是汽车出行的第一要务,早期的智能驾驶功能主要是集中在帮助驾驶 员减少交通事故的辅助驾驶功能。其中,典型的功能为 AEB(Autonomous Emergency Braking,自动紧急制动系统)。AEB 系统通过摄像头或雷达检测和识别前方车辆,在 有碰撞可能的情况下先用声音和警示灯提醒驾驶者进行制动操作回避碰撞。根据 Euro NCAP 研究结果显示:AEB 技术能在现实世界中减少 38%的追尾碰撞,且无论 是在城市道路(限速 60km/h)或郊区道路行驶的情况下,效果并无显著差别。 根据《中国自动驾驶安全读本》,当前我国交通领域面临诸多痛点,包括:人为 原因导致的交通事故率占比 90%;因为交通拥堵,仅仅在北京就造成了人均 4013.31 元/年的经济成本;我国物流费用在 GDP 中的比重达到 14.6%,远超欧美国家,效率 低下;我国大型城市停车位缺口平均在 70%以上,停车难的问题越来越突出。 7 请务必阅读报告末页的重要声明
8 . 行业深度研究 图表 2:智能驾驶功能的价值 来源:中国自动驾驶安全读本,国联证券研究所 智能驾驶功能有望成为解决这些痛点的方案,其价值体现在多个方面: ✓ 提升安全性:智能驾驶功能帮助减少交通事故率。 ✓ 提升效率,减少成本:协同式交通系统可以提高燃油经济性及交通效率。 ✓ 提高舒适性:减轻驾驶负担,解放用户时间。 1.3 智能驾驶的经济价值:重构产业的革命 当前,汽车行业正在经历 100 多年来最为剧烈的变革,“新四化”趋势(电气化、 智能化、网联化、共享化)带来全方位的产业革命。在这一变革中,智能驾驶将显著 提升汽车电子、软件算法等在汽车价值中的比重。先进的计算机、通讯、算法等技术 成果将被应用在智能驾驶汽车上。传统汽车行业的生产组织要素(知识技能、组织模 式等)将被全面改变,有望创造众多新增部件机会。 图表 3:汽车行业“新四化”是全方位的革命 图表 4: 软件定义汽车:通过软件持续优化与改变 来源:国联证券研究所 来源:华为,国联证券研究所 软件定义汽车理念已经越来越被行业接受,通过软件更新(OTA)持续的优化功 能与创造价值成为未来智能汽车必备特征。智能驾驶功能的演进也是汽车产业逐步 重构的重要内容。 8 请务必阅读报告末页的重要声明
9 . 行业深度研究 1.4 智能驾驶技术分级与产品 ➢ 智能驾驶技术分级标准 当前,行业普遍遵循 SAE 协会定义的智能驾驶等级。但从产品属性来看,智能 驾驶分为人承担责任和车承担责任两类。其中,L2 及以下的智能驾驶通常被定义为 ADAS(高级驾驶辅助系统),其最大的特点是系统只是給驾驶员提供协助,驾驶员需 要承担所有的责任与后果。而在 L4 及以上的智能驾驶汽车上,责任主体为汽车生产 或者汽车服务商对于 L3 级别的智能驾驶,因为其只能在特定条件下代替人,并且在 系统失效的时候需要人及时接管车辆,在实际应用中的可操作性及责任界定问题在行 业内外存在较大争议。从技术角度而言,L3 级别智能驾驶是技术发展的必经阶段, 但从法律及产品角度,仍存在着较大争议。 图表 5:SAE 智能驾驶分级定义:自动驾驶是高等级的智能驾驶 来源:SAE,中国自动驾驶安全读本,国联证券研究所 ➢ 智能驾驶产品开发战略选择 Waymo、滴滴等科技公司与初创公司采取“高举高打”策略,直接针对 L4 级别 的智能驾驶进行研发,以期实现全自动驾驶。根据 Navigant Research 发布的 2020 年度自动驾驶汽车排行榜,Waymo、通用 Cruise、百度处于领先地位。Waymo 从 2009 年就开始了相关研究,其在该领域投入最大、积累数据最多、应用最全面。 图表 6:从产品属性来看,智能驾驶分为两类产品 图表 7:不同公司的产品开发战略选择 来源:国联证券研究所 来源:网络资料,国联证券研究所 9 请务必阅读报告末页的重要声明
10 . 行业深度研究 从技术角度分析,针对 L4 级别的智能驾驶虽然已经有了很多进步,但是目前仍 处于试验研究阶段。面对情况复杂的开放道路,技术成熟度还远未达到全面商业化运 营的要求。2019 年,著名咨询公司 Gartner 在其报告中认为 L4 级别自动驾驶技术 全面成熟还需要 10 年以上的时间。 图表 8:完全达到高等级智能驾驶(L4 自动驾驶)还是需要较长的时间 来源:Gartner Hype Cycle For Emerging Technologies 2019,国联证券研究所 主流汽车企业均从 ADAS 功能入手实现产品化,并逐步向 L3、L4 级别功能方 向演进。头部企业则是同时布局 ADAS 产品开发与 L4 级别的自动驾驶技术研究, 例如:大众,GM,Ford 等。当前,L2 智能驾驶产品已经较为成熟,正在向 L3 技术 阶段发展。企业通过传感器、计算平台、算法的不断升级与迭代,逐步完善产品功能, 并扩展应用场景。特斯拉、奥迪、小鹏等已经宣传开发出具备 L3 技术能力的智能驾 驶汽车,但因为 ODD(Operational Design Domain:设计运行区域)在法律及标准上还 没有明确,他们更多以 L2+来定义相关产品。2020 年底,特斯拉在写给加州机动车 管理局(DMV)邮件中承认,FSD 目前并非真正的完全自动驾驶,FSD 和 Autopilot 一 样,都属于 L2 级自动辅助驾驶系统。 图表 9:Waymo 处于自动驾驶领先位置 图表 10:自动驾驶面临长尾效应:难以覆盖全面 来源:Navigant Research Leaderboard Report: Automated Driving 2020 来源: Waymo, 国联证券研究所 10 请务必阅读报告末页的重要声明
11 . 行业深度研究 我国更加强调智能化与网联化同步发展,以网联功能构建“人-车-路-云”的整体 解决方案,减小单车智能的开发难度。2020 年 2 月,由发改委等 11 部委联合发布的 《智能汽车创新发展战略》中明确提出:“到 2025 年,中国标准智能汽车的技术创 新、产业生态、基础设施、法规标准、产品监管和网络安全体系基本形成。实现有条 件自动驾驶的智能汽车达到规模化生产,实现高度自动驾驶的智能汽车在特定环境下 市场化应用。智能交通系统和智慧城市相关设施建设取得积极进展,车用无线通信网 络(LTE-V2X 等)实现区域覆盖,新一代车用无线通信网络(5G-V2X)在部分城市、 高速公路逐步开展应用,高精度时空基准服务网络实现全覆盖。” 图表 11:各国通向自动驾驶的战略选择 图表 12:我国强调智能化与网联化协同发展 来源:《德勤:新基建下的自动驾驶》 ,国联证券研究所 来源:汽车工程协会节能路线图,国联证券研究所 11 请务必阅读报告末页的重要声明
12 . 行业深度研究 2 市场需求:产品功能与应用场景的匹配程度影响用户需求 2.1 ADAS(辅助驾驶):产品成熟,功能不断丰富 ADAS(先进辅助驾驶系统) 利用雷达、摄像头等传感器采集汽车周边环境数据, 进行静态、动态物体的识别、跟踪,控制系统结合地图数据进行做出行为决策,使驾 驶者觉察可能发生的危险,必要情况下直接控制车辆的刹车或者转向动作,可有效提 升驾驶安全性、舒适性。 ADAS 所涉及的主要零部件毫米波雷达、超声波雷达、摄像头、电动转向、电动 刹车等已经在技术上成熟,并实现了大规模量产与应用。ADAS 的功能与应用也越来 越丰富,相关测评标准已经颁布。在国家标准(2019 年) 《道路车辆先进驾驶辅助系 统(ADAS)术语及定义》中给出了 36 项 ADAS 功能,包含 FCW、BSD、HMW、HUD 等信息辅助类 21 项,AEB、ACC、LKA 等控制辅助类 15 项。 图表 13:常见乘用车 ADAS 功能、价值及其工作原理 价值 功能 说明 感知部分 执行部分 ACC(Adaptive Cruise Control) 距离传感器(微波雷达、激 油门、挡位、制 保持安全距离,自动控制巡航车速 自适应巡航系统 光雷达、摄像头等) 动 LKA(Lane Keeping Assist) 在车辆非受控偏离车道时,自动调 车道线识别传感器(摄像 转向 车道保持系统 节转向 头、激光雷达等) 安全控制 AEB(Autonomous Emergency Braking) 距离传感器(微波雷达、激 前方出现障碍物,自动紧急停车 制动 (控制辅助) 自动紧急制动 光雷达、摄像头等) 可以根据道路的形状来改变大灯的 AFL(Adaptive Front Lights ) 方向。令一些智能大灯控制系统能 摄像头 前大灯 智能大灯控制 够根据车速和道路环境来改变大灯 的强度。 报警(仪表显 FCW(Forward Collision Warning) 距离传感器(微波雷达、激 检测车距,并发出警告 示、声音、振动 前撞预警 光雷达、摄像头等) 等) 报警(仪表显 LDW(Lane Departure Warning) 在驾驶员无意识偏出车道时发出报 车道线识别传感器(摄像 示、声音、振动 车道偏离预警 警 头、激光雷达等) 安全提醒 等) (信息辅助) 报警(仪表显 DMS(Driver Monitoring Systems) 当驾驶员出现疲劳,注意力不集中 摄像头 示、声音、振动 注意力检测系统 的时候提醒驾驶员 等) 报警(仪表显 BSD(Blind Spot Detection) 距离传感器(微波雷达、激 监视驾驶员视觉盲区,给予警告 示、声音、振动 盲点检测 光雷达、摄像头等) 等) 距离传感器(超声波、毫米 油门、制动、转 提升效率 AP 自助泊车 识别周围环境、实现自动停车入位 波、激光雷达、摄像头等) 向 来源:国联证券研究所 在乘用车领域,常用的 ADAS 功能包括安全控制类的 ACC/AEB/LKS 等,预警 类的 FCW/LDW/PCW/BSD 等,其他辅助性的 AP 等功能。 12 请务必阅读报告末页的重要声明
13 . 行业深度研究 在商用车领域,因为相关零部件成熟稍晚,ADAS 装配率还比较低。当前量产车 辆主要搭载的是 L1 级别功能或者信息报警类功能,如 AEB/BSD/DMS 等。随着商用 车电控执行器(刹车、转向等)产品的成熟,ADAS 功能在商用有望越来越丰富。 图表 14:乘用车常见 ADAS 功能 图表 15:商用车 ADAS 系统构成 来源:搜狐汽车 来源:鸿泉物联 2.2 L3/L4(自动驾驶):场景决定市场空间与落地节奏 因为技术的局限性,L3/L4 级自动驾驶技术产品需要依托场景进行开发。对于驾 驶的场景,可以从环境的封闭性与车辆运行速度进行划分,相对封闭的环境与相对低 的运行速度有利于降低产品的开发难度。当前,典型的应用场景包括:高速公路、城 市道路、停车场、机场、矿区、园区、港口等。 图表 16:典型的智能驾驶使用场景 图表 17:应用场景决定市场空间(百亿元) 来源:亿欧智库,国联证券研究所 来源:蔚来资本&罗兰贝格,国联证券研究所 针对特定场景开发 L3/L4 级自动驾驶产品优点是能够更快实现产品落地,缺点 是产品定制化特征决定了其市场规模将会有限。根据罗兰贝格与蔚来资本的报告,自 动驾驶有望落地的场景中,跨域干线物流市场空间达到 7000 亿元,自动驾驶出租车 Robotaxi 市场空间达到 3500 亿元。而在港口场景中因为集装箱卡车本身规模有限 (1 万余辆),智能驾驶系统市场空间仅 60 亿元。 13 请务必阅读报告末页的重要声明
14 . 行业深度研究 过去几年,经历了自动驾驶投资起落后,“场景致胜”已经成为行业共识。当前, 各个公司纷纷选定自己的主攻场景,以争取实现更早的商业化落地。Waymo、百度、 滴滴、Uber、文远知行、小马智行等公司的重点在 Robotaxi 领域;TuSimple(图森未 来)、智加科技、赢彻科技等公司主攻干线物流;主线科技、西井科技等集中在港口物 流;希迪智驾、易控智加等主攻矿区场景;京东 X、菜鸟等则在园区物流配送上投入 较大。 图表 18:国内自动驾驶领域投资波动 图表 19:港口集装箱卡车与末端配送小车 投融资事件(起) 披露投融资金融(亿元) 90 900 78 75 80 800 811 70 62 60 700 60 600 534.9 50 43 500 436.3 40 400 30 23 24 300 225.6 20 184.2 200 8 176.4 10 2 100 0 0.3 0.7 8.2 0 来源:企查查,盖世汽车,国联证券研究所 来源:东风汽车,京东 X,国联证券研究所 不同的场景,产品开发难度不同,商业落地速度也有差别。因为港口集装箱卡车 运行环境较为封闭,车速要求不高,产品开发相对简单,有望在 2023 年前后实现商 业化落地。而 Robotaxi 因为场景较为复杂,即使在美国较高的出行成本下,实现商 业化的收支平衡也要到 2026 年以后。这也是 Waymo 在美国凤凰城的 Robotaxi 运 营无法持续扩大的原因。 图表 20:L3 以上的自动驾驶开发:各公司选定主攻场景 来源:亿欧智库,国联证券研究所 14 请务必阅读报告末页的重要声明
15 . 行业深度研究 2.3 产品功能价值决定需求弹性 ➢ 辅助驾驶的安全功能被纳入法规标准,有望快速普及 智能驾驶的主动安全功能能够提高道路安全、减少交通事故。因此,我国政 府正在将会越来越多的主动安全功能纳入到法规标准体系。 在乘用车领域, AEB 等辅助驾驶功能已经被纳入欧洲、北美、我国的测试认证 规范,标准引导产品升级的意味明显。2018 年,AEB 已被纳入我国乘用车的新车评 价规程(C-NCAP),缺乏相关配置的车型将难以获得较高的评级。根据评分体系,在 2018 年,车辆要获得 5 星级评价,主动安全的最低得分率要求为 26%;而到 2019 年,最低得分率提升至 38%;2020 年提升至 55%。根据 Euro NCAP 的发展规划, 针对 AEB 功能,将引入更多测试包括:后向行人保护、AEB 交叉路口评价等。2022 年开始引入 Head-on(迎面)测试,模拟车辆正面头碰头的场景。 图表 21:ADAS/AD(主动安全)相关标准计划 图表 22:乘用车对 AEB 搭载与性能要求越来越高 来源:中汽中心(CATARC) 来源:搜狐汽车,国联证券研究所 在商用车领域,特别是“两客一危”车辆(公交、客运、危化品车辆),因为其对 交通安全运行影响重大,政府已经将装配 AEB,FCW 等辅助驾驶功能列入强制标 准。考虑到商用车安全问题所造成的社会隐性成本,针对普通商用车辆的推荐标准也 已经颁布。部分强制性政策与规定从“两客一危”开始,并逐步向重型载货汽车、 新能源汽车、中轻卡、专项作业车等领域推行。 图表 23:主动安全功能被引入商用车管理法规 图表 24:“两客一危”安全监管大量应用辅助驾驶 来源:中汽中心(CATARC) 来源:锐明技术,国联证券研究所 2020 年发布的《道路运输条例(修订草案征求意见稿)》,要求客运车辆、危 险货物运输车辆、半挂牵引车及总质量 12 吨以上的载货车辆应当按照有关规定 15 请务必阅读报告末页的重要声明
16 . 行业深度研究 配备具有行驶功能的卫星定位装置和智能视频监控装置。 这些涉及人员安全的标准与法规政策的出台将会促进辅助驾驶(安全)功能 渗透率提升,加速功能改进与系统单车价值提升。 ➢ 显性价值清晰的智能驾驶功能市场接受度高 在车辆驾驶过程中,停车、跟车、变道、紧急情况应对是常见的驾驶员操作。乘 用车的智能驾驶功能开发主要是针对这些情景中的痛点,满足驾驶员的需求。例如, 停车对新手司机而言难度较大,自动泊车(代客泊车)能够完成从找车位到泊车入库 的全过程。而在交通拥堵的道路,ACC(自适应巡航)能够有效跟车缓解驾驶员的疲 劳。对这些功能需求与驾驶员的经验、道路运行条件密切相关,产品价格对于需求弹 性影响较大。 图表 25:自动泊车功能解决用户痛点 图表 26:ACC 功能缓解驾驶员跟车疲劳 来源:百度 Apollo,国联证券研究所 来源:网易汽车,国联证券研究所 而在商用车领域,车辆作为生产资料,智能驾驶功能主要围绕如何安全、高效的 创造价值进行开发。产品与功能的接受度与投入回报比直接相关,一旦突破拐点,市 场渗透率有望快速增长。图森未来(TSP.O)在其招股书中披露,自动驾驶卡车有望 实现 USD1.98/mile 的成本节省,未来有望接近 1 年的投入回报比,这将使得用户接 受度迅速提升。与之类似,2020 年我国重卡 AMT 变速箱投入回报比已被用户接受, 出货增速超过 7 倍且供不应求,正在快速普及。 图表 27:自动驾驶卡车将在多个环节为用户节约成本 图表 28:商用车智能驾驶产品价值较为显性 来源:图森未来招股说明书,国联证券研究所 来源:国联证券研究所 16 请务必阅读报告末页的重要声明
17 . 行业深度研究 尽管乘用车与商用车对智能驾驶需求出发点不同,但随着政策完善、技术成熟、 客户认知度提高,能够切实解决用户痛点的智能驾驶功能有望快速普及。 ➢ 个性化智能驾驶功能市场接受度将由产品成熟度、用户支付意愿共同决定。 随着对于用户体验的重视,智能座舱作为智能驾驶中“人机交互”的端口越来越受 到重视,HUD(抬头显示)、多屏显示等功能被已在部分车型上搭载。但这些个性化 的功能还面临成本较高、成熟度不够的局面,其市场普及与渗透率提升需要时间。 图表 29:智能座舱功能带来个性化体验 图表 30:用户对车载导航地图支付意愿不强 来源:汽车之家,国联证券研究所 来源:四维图新,百度地图 同时,部分智能驾驶功能夸大宣传、操作复杂、用户体验不佳,在客户端存在“老 手不会用,新手不会用”等问题,影响了其渗透节奏。根据威尔森咨询在 2019 年的调 查,中国消费者对智能驾驶的兴趣度达到 71%,但是信赖度只有 28%。因为用户习 惯与功能成熟度,用户更多不愿意支付额外费用或者处于观望状态。根据 2020 年 Q4 Tesla 交流会,中国用户的 FSD 软件付费激活率仅为 2%,费用更低的小鹏汽车 Xpilot 激活率也仅 20%。 对于个性化的智能驾驶产品,还需要在提升用户满意度与支付意愿上努力。 图表 31:ADAS 功能体验调查,用户满意度不高 图表 32:用户对智能驾驶兴趣度高,支付意愿不强 80% 71% 70% 60% 实用性大 宣传噱头大 25% 50% 于实用 40% 34% 29% 28% 功能设计不 30% 20% 明确 误判 20% 操作复杂 8% 率高 10% 13% 2% 12% 0% 了解度 信赖度 兴趣度 特斯拉FSD付费率 小鹏Xpilot付费率 反应不灵敏 8% 来源:盖世汽车,国联证券研究所 来源:威尔森汽车智能决策,亿欧汽车,国联证券研究所 17 请务必阅读报告末页的重要声明
18 . 行业深度研究 3 政策、技术、标杆共同推动,智能驾驶加速到来 3.1 政策支持:国家战略方向;地方大力扶持;行业积极响应 ➢ 智能驾驶的国家战略 2020 年,我国 11 个部委联合发布的《智能汽车创新发展战略》中已明确指出智 能驾驶汽车是国家战略发展方向,其包括:“(一)智能汽车已成为全球汽车产业发展 的战略方向; (二)发展智能汽车对我国具有重要的战略意义; (三)我国拥有智能汽 车发展的战略优势。” 发展层面:智能驾驶汽车是成为汽车强国的战略选择。产业层 面:鼓励相关产业跨界融合,产业链重构,智能化,网络化,平台化发展。技术层面: 智能驾驶带动了高新技术的发展。应用层面:汽车由机械运载工具转变为智能移动空 间和应用终端、新兴业态的重要载体。 ➢ 地方大力扶持智能驾驶产业落地 地方政府对智能驾驶发展也极为重视,纷纷出台各项鼓励与扶持政策。包括:依 托新型城镇化和智能化道路交通设施等重大工程建设,纷纷建立智能公交与车路协同 技术应用示范线路;制定示范应用推广计划,逐年扩大智能网联公交车示范区域和应 用数量;制定政府采购要求,逐年提高智能驾驶环卫车等的示范应用比例;设立人才 专项配套政策,引导行业人聚集;扶持企业的智能驾驶技术研发等。地方政府希望通 过不断扩大智能驾驶示范应用规模,以示范应用带动产业发展。 ➢ 行业标准体系正在成形,产品评测促进行业健康发展 行业标准是指导智能驾驶发展的重要依据。相关部门将智能网联汽车标准体系 框架定义为“基础”、“通用规范”、“产品与技术应用”、“相关标准”四个部分,同时根据 各具体标准在内容范围、技术等级上的共性和区别,形成 14 个子类。2020 年,我 国已制定 30 项以上智能网联汽车重点标准,初步建立能够支撑驾驶辅助及低级别自 动驾驶的智能网联汽车标准体系,到 2025 年预计将制定 100 项以上智能网联汽车标 准,系统形成支撑高级别自动驾驶的智能网联汽车标准体系。 图表 33:我国智能网联汽车标准体系框架 图表 34:ADAS 基本功能标准体系已经建立 来源:工信部,国联证券研究所 来源:中汽中心,国联证券研究所 产品测试评价、质量检测体系完善将为消费者购车用车保驾护航。随着整车企业 纷纷发布具备 L3~L4 级自动驾驶功能汽车产品量产计划,且积极开展道路测试、应 18 请务必阅读报告末页的重要声明
19 . 行业深度研究 用示范及商业化试运营,行业急需建立完善智能网联汽车产品等级划分及评估准则, 服务消费者购车用车。2020 年 10 月,由中国智能网联汽车产业创新联盟、国汽(北 京)智能网联汽车研究院有限公司、华为技术有限公司、中汽中心、中国汽研等共同 编制完成了《智能网联汽车产品测试评价白皮书》,行业在智能网联汽车产品测试评 价流程上达成了共识。其适用于配备自动驾驶系统且具备 L3/L4/L5 自动驾驶功能的 M 类、N 类车辆,其它类型车辆可参照执行;可用于评价高速/环路、市内运行、泊 车/取车、封闭园区和城际/郊区等五大连续运行场景的自动驾驶运行能力;可用于 Robotaxi、AVP、HWP 等典型自动驾驶汽车产品的测评,同时港口、矿区车辆可参 照使用。2021 年 1 月,国家市场监督管理总局正式同意中国汽研与湖南湘江智能科 技创新中心有限公司共同筹建“国家智能网联汽车质量监督检验中心(湖南)”。 图表 35:行业对于产品测试评价达成共识 图表 36:2021 年,智能网联汽车质检中心获批 来源:《智能网联汽车产品测试评价白皮书》 ,国联证券研究所 来源:中国汽研,国联证券研究所 3.2 技术进步:感知/智能/通讯技术导入 ➢ 感知技术发展 感知是指智能驾驶系统从环境中收集信息并从中提取相关知识的过程,通常包含 环境感知和定位两部分。其中,环境感知(Environmental Perception)指对于环境 的场景理解能力,例如障碍物的类型、道路标志及标线的识别、行人车辆的检测、交 通信号的辨识等。定位( Localization )是对感知结果的后处理,通过定位功能从而 帮助汽车了解其相对于所处环境的位置。 图表 37:车辆感知识别的内容 图表 38:激光雷达在汽车上的应用 来源:智加科技,国联证券研究所 来源:禾赛科技招股书,国联证券研究所 感知是智能驾驶系统的基础。以摄像头为基础的视觉感知技术,因为成本较低, 19 请务必阅读报告末页的重要声明
20 . 行业深度研究 获取信息丰富,有利于大规模在汽车上应用。同时,毫米波雷达、超声波雷达技术在 汽车上也应用得越来越成熟。激光雷达过去一般用在测绘、工业生产领域,价格昂贵。 2019 年,Luminar 发布了价格不到 1000 美元的 LiDAR 解决方案。Velodyne 公司则 计划到 2024 年将平均售价从 2017 年的 17900 美元降至 600 美元。2020 年,华为 宣布其将量产的激光雷达单价在 200 美元以下。随着激光雷达价格的快速下降,奥 迪、宝马、奔驰等整车企业已将其纳入了搭载规划。 ➢ 算法升级与计算平台进步 过去十年,随着深度学习为代表的算法在人工智能领域中应用,计算机科学又进 入到了新的阶段。深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿 人脑的机制来解释数据的一种机器学习技术。它的基本特点,是试图模仿大脑的神经 元之间传递,处理信息的模式。最典型的应用是计算机视觉和自然语言处理(NLP)领 域。其需要依靠大量的数据与硬件计算能力来完善功能。 Mobileye 以其算法和芯片技术快速成为 ADAS 领域头部企业,市场占有率一度 超过 70%。当前,其算法日趋成熟、芯片性能大幅提升,能够实现判断前方车辆、行 人、安全距离、车道线等功能,满足了智能驾驶大规模应用的需求。其第四代算法芯 片 EyeQ4 较上一代性能提升 8 倍,EyeQ 系列 芯片累计发货量超过 5000 万块。 2017 年,Mobileye 被英特尔以 153 亿美元巨资收购。 英伟达(NVIDIA) 、高通(Qualcomm) 、华为、百度、地平线等科技公司也纷纷 布局车载计算平台。2019 年末,英伟达推出的全新自动驾驶芯片 ORIN,其性能已达 200TOPS(每秒钟一万亿次运算),接近 L4 级别自动驾驶的算力要求。 图表 39:Moblieye 以算法与芯片成为行业龙头 图表 40:计算能力提升满足高等级智能驾驶需求 来源:Mobileye 官网 来源:地平线 ➢ 5G 时代到来,V2X 成为新基建一部分 车联网(V2X)能够实现车与车通讯(V2V) 、车与人通讯(V2P) 、车与路通讯 、车与云端通讯(V2C)等信息交换。通过 V2X,车辆可以通过网络获取到更 (V2I) 多的道路和其他交通参与者的信息,而不是仅仅通过自车的感知和预测,能够有效降 低单车成本、提升系统可靠性。 5G 通讯技术正在全球范围进行应用。对于智能驾驶,5G 的低延时、高带宽的 特点,为 V2X 通讯网络提供了更全面的保障。当有低延时高带宽的基础设施支撑后, 20 请务必阅读报告末页的重要声明
21 . 行业深度研究 智能驾驶通过车端和云端的协同感知、计算能够发挥出更大的潜力。5G 时代的到来, 将推动车联网功能(V2X)的扩展与应用,有望帮助智能驾驶完善功能。 图表 41:“人-车-路-云”相互连接,构建未来智慧交通体系 来源:《德勤:新基建下的自动驾驶》 ,国联证券研究所 我国 5G 通信技术全球领先,基站建设覆盖广,为汽车的网联化提供了良好的基 础环境。因此,我国在实现智能交通的战略上更加偏向车路协同发展,注重车辆的网 络化水平提升,减小对于单车智能技术的依赖,加快智能网联汽车产品落地。2020 年,智慧道路基站建设成为我国“新基建”的重要内容。智慧基站作为基础设施被应用 在道路上,其包括了道路信息感知、数据存储与计算、信息中继传输等功能为一体。 智慧基站通过 5G/V2X 通信,以极低延时将信息传输给周边车辆、移动终端及云端, 实现“人-车-路-云”协同交互,提供高质量道路信息服务。 图表 42:智慧基站承担路段感知、通讯、计算功能 来源:万集科技,国联证券研究所 传感器、计算机、通讯、电子等技术的发展直接或者间接的推动着智能驾驶技术 的进步,智能驾驶领域也成为多产业融合发展的代表。在技术端,L3/L4 级别自动驾 驶技术的成熟度依托于各部分技术的成熟度,体现为明显的短板效应。 因此,对于自动驾驶,我们认为不应高估技术短期突破,但是更不应低估其对于 产业结构、商业模式的长期影响。 21 请务必阅读报告末页的重要声明
22 . 行业深度研究 3.3 标杆引领:特斯拉引领智驾体验 伴随着上海工厂量产 Model 3,2020 年特斯拉达到了近 50 万辆交付。特斯拉 2017-2019 年的交付量分别达到 10.31/24.52/36.75 万辆,持续高速增长。除了纯电 动,驱动特斯拉的另一个产品特征就是其智能驾驶功能,实现全面自动驾驶(FSD, Full Self Driving )是公司产品开发的目标。 图表 43:特斯拉汽车连续高速增长 图表 44:智能驾驶功能是特斯拉宣传重点 2016-2020特斯拉汽车全球销量 60 150% 50 单位:万辆 40 100% 30 20 50% 10 0 0% 2016 2017 2018 2019 2020 交付量 同比 来源:特斯拉公告,国联证券研究所 来源:Tesla 官网,国联证券研究所 特斯拉汽车除支持目前已实现的 Autopilot 自动辅助驾驶功能外,能够通过 OTA 更新软件,不断完善功能。环绕车身共配有 8 个摄像头,视野范围达 360 度, 对周围环境的监测距离最远可达 250 米。12 个超声波传感器作为整套视觉系统的补 充,可探测到柔软或坚硬的物体,传感距离和精确度接近上一代系统的两倍。增强版 前置雷达通过发射冗余波长的雷达波,能够穿越雨、雾、灰尘,甚至前车的下方空间 进行探测,为视觉系统提供更丰富的数据。系统功能已包括:主动巡航控制、辅助转 向、自动变道、自动泊车、车库召唤、自动驶入高速匝道、自动识别红绿灯、路标、 环岛等复杂路况并自动控制等。同时,特斯拉引领的大屏幕车载中控,实现了更加智 能的人机交互模式,极大的提高了驾驶体验。 图表 45:国产品牌对标特斯拉智能驾驶功能与配置 来源:智己汽车官网,国联证券研究所 标杆已至,本土品牌纷纷应战,智能驾驶将由导入期进入成长期,体现为搭载功 22 请务必阅读报告末页的重要声明
23 . 行业深度研究 能越来越多,渗透率越来越高。特斯拉的 Autopilot 带来了巨大的示范效应,有望成 为智能驾驶功能全面普及的加速器。特别是新能源汽车领域,小鹏汽车、蔚来汽车、 智已汽车等均将智能驾驶功能作为其产品力的体现,这将推动 L2 及 L2+的智能驾驶 的在市场端的普及。 在燃油车领域,L2 及以上智能驾驶功能的渗透率仍在低位,市场潜力巨大。以 典型 L2 级自动泊车功能为例,该功能在 30 万以上的车型配比较高,超过 30%;而 在 10~20 万区间的车型中,该功能平均率仅为 5%。8~20 万的区间是我国乘用车销 量的主力,占比达到 64%。可见,该功能的整车搭载率依然在 10%左右。细分来看, 以长城汽车、吉利汽车为代表的自主龙头企业的泊车功能搭载率已达到 10%以上。 智能驾驶功能已成为自主产品超高性价比与产品领先性的标志,正在越来越被重视。 图表 46:乘用车市场自动泊车功能搭载仍然较低 图表 47:全球 ADAS 市场预测 2019-2027 1600 40 1349 35 1400 30 1200 配置占比(%) 亿元(USD) 25 1000 800 GAGR 20.7% 20 15 600 10 400 300 5 200 0 0 10万以下 10~20 万 20~30 万 30万以上 2019年 2027年 来源:易车网@2020,国联证券研究所 来源: MarketStand@2019,国联证券研究所整理绘制 随着智能驾驶功能的增加与普及,Marketstand 公司预测从 2019 到 2027 年, 全球 ADAS 市场年均增速将达到 20.7%,有望成为千亿美元的市场。 图表 48:我国乘用车部分 ADAS 配置变化情况:虽然逐年增高,但大部分功能低于 20%搭载率 30.00% 70.00% 60.27% 60.00% 25.00% 57.07% 53.71% 49.61% 50.00% 20.00% 46.90% 40.00% 15.00% 30.00% 10.00% 20.00% 5.00% 10.00% 0.00% 0.00% 2016年 2017年 2018年 2019年 2020年(1-3月) 自动刹车 自适应巡航控制(ACC) 自动泊车系统 全速自适应巡航 自适应远近光 车道保持辅助系统 自动头灯 来源:中汽中心,国联证券研究所 23 请务必阅读报告末页的重要声明
24 . 行业深度研究 3.4 标杆引领:商用车龙头寻求开辟新大陆 ➢ 商用车市场更加追求安全与高效,智能驾驶价值更加显性 商用车作为生产工具,投资回报比是客户价值的根本。在细分客户之中,个体用 户更加看重初始购买成本,而团体客户多选择 TCO(全生命周期费用)作为其购买 判断的依据。我国物流费用在 GDP 中约占 15%,明显高于发达国家水平。其中一个 重要的原因是公路货运效率不高,因为安排不合理、信息不对称造成空载运营。根据 罗兰贝格测算,当前中国商用车市场总 TCO 规模为 7 万亿,仅仅通过车联网方式将 会有 1.02 万亿市场优化空间。可见,智能网联汽车对于商用车市场有着巨大吸引力, 能够降低社会物流总成本。 图表 49:我国物流费用占 GDP 比重较高 图表 50:通过车联网技术能够有效节约运输成本 16.00% 14.00% 12.00% 10.00% 8.00% 6.00% 4.00% 2.00% 0.00% 中国 美国 日本 中美日物流费用在GDP占比(%) 来源:产业信息网,国联证券研究所 来源:罗兰贝格 随着智能物流的发展,重卡整车企业的边界将有望大幅拓宽。重卡整车企业有望 从汽车制造业企业转变为智慧交通运输解决方案提供者。这其中包括车辆业务将会 延伸到新能源领域,车队管理服务将会更加注重数据交易,通过自动驾驶卡车提供运 营管理服务,零部件涵盖新增的高附加值部件。车联网技术有望减小企业与客户之间 的信息不对称,这将有效帮助整车企业提高后市场的营运能力,包括汽车金融、售后 维修、二手车交易等。 图表 51:随着自动驾驶重卡发展,整车企业的价值领域将会大幅拓展 来源:Daimler Truck,BCG,国联证券研究所 24 请务必阅读报告末页的重要声明
25 . 行业深度研究 ➢ 智能驾驶重卡成为企业未来产品方向 国际商用车企业利润在产品端与后市场服务端的比例为 7:3,而我国汽车产业 当前还是以产品销售为主的传统模式。智能驾驶重卡有望成为产品开发的主要方向, 国内企业业务模式有望拓展。 2019 年,一汽解放发布了“哥伦布智慧物流开放计划”,旨在打造新业态产业集 群,探索新技术、新模式、新市场,引领未来。2020 年,其合作伙伴已发展到 96 家, 共同打造了领先的商用车智能网联生态。一汽解放长期位居国内重卡销量第一,在其 带动下,陕汽、东风等竞争对手也开始加快了其智能重卡产品开发节奏。 图表 52:一汽解放已通过哥伦布计划布局智能驾驶、后市场、车联网 来源:公开资料整理,国联证券研究所整理 对于科技公司,L3/L4 级的智能重卡商业化落地即将进入冲刺阶段。2021 年 3 月,图森未来递交了招股说明书,有望在美国上市,成为自动驾驶第一股。2021 年 4 月,智加科技(Plus)宣布完成新一轮 2.2 亿美元融资,加上一个月前的 2 亿美元, 智加科技今年已完成总计达 4.2 亿美元的融资。2020 年 11 月,嬴彻科技宣布完成了 1.2 亿美元股权融资,此轮融资由宁德时代领投,原有股东包括普洛斯、G7、蔚来资 本参与跟投。商用车领域的标杆科技公司正在获得资本市场的关注。 25 请务必阅读报告末页的重要声明
26 . 行业深度研究 4 智能驾驶产业链分析:增量零部件与产业重构带来机会 4.1 当前:智能驾驶产业链分工与合作,集成能力是关键 智能驾驶主要功能包括环境感知、决策规划、控制执行等。从功能职责分析,零 部件供应商负责提供感知相关的各类传感器,转向、制动等车辆控制执行器;整车企 业自主或者与零部件 Tier1 供应商一起负责系统的集成,主要包括:数据融合、规划 决策、车辆控制等系统功能部分。 图表 53:智能驾驶整车厂(OEM)与供应商的分工与合作 来源:国联证券研究所 ➢ 当前:自主整车集成能力有限,依赖国际 Tier1 对于 ADAS 级别智能驾驶产业链,上游为 Tier2/Tier3 供应商,负责提供元器件 或者次要零部件;中游系统 Tier1 供应商通常以自己的优势产品为依托,整合次级 Tire2 供应商,为整车企业提供系统产品与服务;下游则为整车企业。从技术角度, ADAS 功能涉及感知、控制与执行等众多领域, Tier1 供应商扮演着承上启下的角 色,需要具备系统集成能力,十分关键。 图表 54:ADAS 级别智能驾驶产业链上下游:主机厂处于顶层,处于主导位置 来源:盖世汽车,汽车工业网,国联证券研究所 26 请务必阅读报告末页的重要声明
27 . 行业深度研究 国际零部件巨头承担着 Tier1 的角色,占据了绝大部分市场份额。在乘用车领域, 大陆、德尔福、博世,电装、奥托立夫为前五名,占据全球超过 65%的市场份额。商 用车 ADAS 的系统集成商集中度更高,威伯科、大陆集团与博世集团三家企业合计 占有全球超过 60%的份额。根据智研咨询测算,2020 年我国 ADAS 市场规模达到 800 亿元。因为国内 ADAS 开发起步晚,自主整车企业多依赖国际 Tier1 供应商提供 成套方案,以确保功能开发的成功率,国内供应商市场份额较小。 图表 55:我国 ADAS 市场增长迅速 图表 56:部分公司 ADAS 业务收入比较(2019 年) 900 50.00% 800 45.00% 700 40.00% 35.00% 600 30.00% 500 25.00% 400 800 20.00% 300 542 15.00% 200 372 10.00% 275 100 151 204 5.00% 0 0.00% 2015 2016 2017 2018 2019 2020(E) 中国ADAS市场规模(亿元) 增速(%) 来源:智研咨询,国联证券研究所 来源:盖世汽车,国联证券研究所 注:2020 年因疫情原因数据有所失真 丰富的产品布局是成为 Tier1 供应商的必要条件。在智能驾驶领域,博世、大陆 和法雷奥是全球 Tier1 中布局最全面的企业,华为是国内 Tier1 中布局最全面的企 业。智能驾驶领域的 Tier1 主要收入来自于感知层中的毫米波雷达与视觉系统、决策 层的控制器等 ADAS 系统增量部件,以提供一体化方案为主。 图表 57:部分零部件企业在智能驾驶领域的布局:国际公司优势明显 感知层 公司 决策层 执行层 视觉 雷达 激光雷达 地图定位 博世 O O O O O O 大陆 O O O O O O 法雷奥 O O O O O 安波福 O O O 国际公司 采埃孚 O O O O O 电装 O O O O 伟世通 O 麦格纳 O O O O 华为 O O O O 百度 O O 德赛西威 O O O 国内公司 均胜电子 O 保隆科技 O O 四维图新 O O 华阳 O O 来源:盖世汽车,各公司官网,国联证券研究所 27 请务必阅读报告末页的重要声明
28 . 行业深度研究 全球前十位的 Tier1 供应商均为欧/美/日/韩企业,缺乏世界级 Tier1 厂商是我国 汽车零部件产业的“阿喀琉斯之踵”,限制了国产汽车电子零部件进入整车体系。成为 一流汽车电子 Tier1,除了必要的规模、丰富的产品线,还需要具备系统集成与服务 能力。 图表 58:全球零部件 TOP10 均能承担 Tier1 角色 全球汽车零部件企业营收规模(2019年) (单位:亿美元) 600 500 400 300 200 100 0 来源:盖世汽车,国联证券研究所 近年来,部分本土企业例如华域汽车、德赛西威、均胜电子等在部分 ADAS 基础 功能上已经具备部分集成能力,正在向 Tier1 角色成长。 28 请务必阅读报告末页的重要声明
29 . 行业深度研究 4.2 未来:产业链重构,增量部件价值高 高等级智能驾驶需要更高的信号传输效率、更强的计算能力、更完善的软件控制, 电子电气架构(EEA)与汽车软件的价值将会持续提升。根据 McKinsey 的测算, 2020 年至 2030 年,软件及电子电气架构(EEA)相关的市场 GARA 将会达到 7%。 电子电气架构(EEA)是整车所用电子器件的组合形式,一个高效架构将有效降 低产品成本、开发成本,提升产品导入效率,同时具备很强的适应性,以应对功能的 不断升级的需求。传统的电子电气架构(EEA)无法适应未来智能驾驶功能的需求, 必须进行升级与调整。其趋势是从传统的分立控制向集中的域控制转变,最终形成 “车载电脑+云计算”的云端互通模式。除了技术上的挑战,这一升级过程也需要伴随 着组织分工的重构,工作量巨大。 图表 59:汽车软件与 EEA 的价值量将会持续提升 图表 60:电子电气架构升级也是组织重构的过程 来源:McKinsey(2020), 国联证券研究所 来源:博世,国联证券研究所 同时,当前汽车软件分布在 50~100 个 ECU 中,软件结构复杂,代码量已经超 过 Facebook、Android 等软件,且开发与维护效率低下,已经无法适应未来高等级 智能驾驶的复杂功能需求。 图表 61:汽车软件与其他软件对比:代码量巨大 来源:大众汽车,国联证券研究所 特斯拉 Model3 革命性 EEA 架构,开启集中计算平台时代,软件定义汽车成为 29 请务必阅读报告末页的重要声明