申请试用
HOT
登录
注册
 
Making Nested Columns as First Citizen in Apache Spark SQL

Making Nested Columns as First Citizen in Apache Spark SQL

Spark开源社区
/
发布于
/
8216
人观看
Apple Siri is the world’s largest virtual assistant service powering every iPhone, iPad, Mac, Apple TV, Apple Watch, and HomePod. We use large amounts of data to provide our users the best possible personalized experience. Our raw event data is cleaned and pre-joined into an unified data for our data consumers to use. To keep the rich hierarchical structure of the data, our data schemas are very deep nested structures. In this talk, we will discuss how Spark handles nested structures in Spark 2.4, and we’ll show the fundamental design issues in reading nested fields which is not being well considered when Spark SQL was designed. This results in Spark SQL reading unnecessary data in many operations. Given that Siri’s data is super nested and humongous, this soon becomes a bottleneck in our pipelines. Then we will talk about the various approaches we have taken to tackle this problem. By making nested columns as first citizen in Spark SQL, we can achieve dramatic performance gain. In some of our production queries, the speed-up can be 20x in wall clock time and 8x less data being read. All of our work will be open source, and some has already been merged into upstream.
0 点赞
0 收藏
2下载
确认
3秒后跳转登录页面
去登陆