- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
时序及分析在hbase上的使用
展开查看详情
1 .Warp 10 - A novel approach for time series management and analysis based on Mathias @Herberts - CTO, Cityzen Data 2017-06-12 Mountain View, CA
2 .What is Warp 10? Open Source Time Series Platform & Tool Suite Apache 2.0 licence Created from scratch for IoT use cases Complements the Hadoop Ecosystem Embedded, standalone and distributed versions
3 .Universal data model - Geo Time Series® Support for LONG, DOUBLE, BOOLEAN and STRING types Full UTF-8 support
4 .Distributed Architecture
5 .A dedicated language for GTS Analytics Stack based language with ~800 functions
6 . WarpScript in one slide... ! != % & && * ** + +! - ->B64 ->B64URL ->BIN ->BYTES ->DOUBLEBITS ->FLOATBITS ->GEOHASH ->HEX ->HHCODE ->HHCODELONG ->JSON ->LIST ->MAP ->MAT ->OPB64 ->PICKLE ->Q ->SET ->TSELEMENTS ->V ->VEC ->Z / < << <= == > >= >> >>> ABS ACOS ADDDAYS ADDMONTHS ADDVALUE ADDYEARS AESUNWRAP AESWRAP AGO AND APPEND APPLY ASIN ASSERT ATAN ATBUCKET ATINDEX ATTICK ATTRIBUTES AUTHENTICATE B64-> B64TOHEX B64URL-> BBOX BIN-> BINTOHEX BITCOUNT BITGET BITSTOBYTES BOOTSTRAP BREAK BUCKETCOUNT BUCKETIZE BUCKETSPAN BYTES-> BYTESTOBITS BYTESTOBITS CALL CBRT CEIL CHUNK CLEAR CLEARDEFS CLEARSYMBOLS CLEARTOMARK CLIP CLONE CLONEEMPTY CLONEREVERSE COMMONTICKS COMPACT CONTAINS CONTAINSKEY CONTAINSVALUE CONTINUE COPYGEO COPYSIGN CORRELATE COS COSH COUNTER COUNTERDELTA COUNTERVALUE COUNTTOMARK CPROB CROP CSTORE CUDF DEBUGOFF DEBUGON DEDUP DEF DEFINED DEFINEDMACRO DELETE DEPTH DET DIFFERENCE DISCORDS DOC DOCMODE DOUBLEBITS-> DOUBLEEXPONENTIALSMOOTHING DROP DROPN DTW DUMP DUP DUPN DURATION DWTSPLIT E ELAPSED ELEVATIONS EMPTY ESDTEST EVAL EVALSECURE EVERY EXP EXPM1 EXPORT FAIL FDWT FETCH FETCHBOOLEAN FETCHDOUBLE FETCHLONG FETCHSTRING FFT FFTAP FILLNEXT FILLPREVIOUS FILLTICKS FILLVALUE FILTER FIND FINDSETS FINDSTATS FIRSTTICK FLATTEN FLOATBITS-> FLOOR FOR FOREACH FORGET FORSTEP FROMBIN FROMBITS FROMHEX FUSE GEO.DIFFERENCE GEO.INTERSECTION GEO.INTERSECTS GEO.REGEXP GEO.UNION GEO.WITHIN GEO.WKT GEOHASH-> GEOPACK GEOUNPACK GET GETHOOK GETSECTION GRUBBSTEST GZIP HASH HAVERSINE HEADER HEX-> HEXTOB64 HEXTOBIN HHCODE-> HUMANDURATION HYBRIDTEST HYBRIDTEST2 HYPOT IDENT IDWT IEEEREMAINDER IFFT IFT IFTE IMMUTABLE INTEGRATE INTERPOLATE INTERSECTION INV ISNULL ISNaN ISO8601 ISODURATION ISONORMALIZE JOIN JSON-> JSONLOOSE JSONSTRICT KEYLIST LABELS LASTBUCKET LASTSORT LASTTICK LBOUNDS LFLATMAP LIMIT LIST-> LMAP LOAD LOCATIONOFFSET LOCATIONS LOCSTRINGS LOG LOG10 LOG1P LORAENC LORAMIC LOWESS LR LSORT LTTB MACROBUCKETIZER MACROFILTER MACROMAPPER MACROREDUCER MAKEGTS MAP MAP-> MAPID MARK MAT-> MATCH MATCHER MAX MAXBUCKETS MAXDEPTH MAXGTS MAXLONG MAXLOOP MAXOPS MAXPIXELS MAXSYMBOLS MD5 MERGE META METASET METASORT MIN MINLONG MODE MONOTONIC MSGFAIL MSORT MSTU MUSIGMA NAME NBOUNDS NDEBUGON NEWGTS NEXTAFTER NEXTUP NONEMPTY NOOP NORMALIZE NOT NOTAFTER NOTBEFORE NOTIMINGS NOW NPDF NRETURN NSUMSUMSQ NULL NaN ONLYBUCKETS OPB64-> OPB64TOHEX OPS OPTDTW OR PACK PAPPLY PARSE PARSESELECTOR PARTITION PATTERNDETECTION PATTERNS PFILTER PGraphics PI PICK PICKLE-> PIGSCHEMA PREDUCE PROB PROBABILITY PUT Palpha Parc Pbackground PbeginContour PbeginShape Pbezier PbezierDetail PbezierPoint PbezierTangent PbezierVertex Pblend PblendMode Pblue Pbox Pbrightness Pclear Pclip Pcolor PcolorMode Pconstrain Pcopy PcreateFont Pcurve PcurveDetail PcurvePoint PcurveTangent PcurveTightness PcurveVertex Pdecode Pdist Pellipse PellipseMode Pencode PendContour PendShape Pfill Pget Pgreen Phue Pimage PimageMode Plerp PlerpColor Pline Pmag Pmap PnoClip PnoFill PnoStroke PnoTint Pnorm Ppixels Ppoint PpopMatrix PpopStyle PpushMatrix PpushStyle Pquad PquadraticVertex Prect PrectMode Pred PresetMatrix Protate ProtateX ProtateY ProtateZ Psaturation Pscale Pset PshapeMode PshearX PshearY Psphere PsphereDetail Pstroke PstrokeCap PstrokeJoin PstrokeWeight Ptext PtextAlign PtextAscent PtextDescent PtextFont PtextLeading PtextMode PtextSize PtextWidth Ptint Ptranslate Ptriangle PupdatePixels Pvertex Q-> QCONJUGATE QDIVIDE QMULTIPLY QROTATE QROTATION QUANTIZE RAND RANDPDF RANGE RANGECOMPACT REDEFS REDUCE RELABEL REMOVE RENAME REPLACE REPLACEALL RESET RESETS RESTORE RETURN REV REVBITS REVERSE REXEC REXECZ RINT RLOWESS ROLL ROLLD ROT ROTATIONQ ROUND RSADECRYPT RSAENCRYPT RSAGEN RSAPRIVATE RSAPUBLIC RSASIGN RSAVERIFY RSORT RTFM RUN RUNNERNONCE RVALUESORT SAVE SECTION SECUREKEY SET SET-> SETATTRIBUTES SETVALUE SHA1 SHA1HMAC SHA256 SHA256HMAC SHRINK SIGNUM SIN SINGLEEXPONENTIALSMOOTHING SINH SIZE SNAPSHOT SNAPSHOTALL SNAPSHOTALLTOMARK SNAPSHOTCOPY SNAPSHOTCOPYALL SNAPSHOTCOPYALLTOMARK SNAPSHOTCOPYTOMARK SNAPSHOTTOMARK SORT SORTBY SPLIT SQRT STACKATTRIBUTE STACKTOLIST STANDARDIZE STL STLESDTEST STOP STORE STRICTMAPPER STRICTPARTITION STRICTREDUCER STU SUBLIST SUBMAP SUBSTRING SWAP SWITCH TAN TANH TEMPLATE TEMPLATE THRESHOLDTEST TICKINDEX TICKLIST TICKS TIMECLIP TIMEMODULO TIMESCALE TIMESHIFT TIMESPLIT TIMINGS TLTTB TOBIN TOBITS TOBOOLEAN TODEGREES TODOUBLE TOHEX TOKENINFO TOLONG TOLOWER TORADIANS TOSELECTOR TOSTRING TOTIMESTAMP TOTIMESTAMP TOUPPER TR TRANSPOSE TRIM TSELEMENTS TSELEMENTS-> TYPEOF UDF ULP UNBUCKETIZE UNGZIP UNION UNIQUE UNLIST UNMAP UNPACK UNSECURE UNTIL UNWRAP UNWRAPEMPTY UNWRAPSIZE UPDATE URLDECODE URLENCODE UUID V-> VALUEDEDUP VALUEHISTOGRAM VALUELIST VALUES VALUESORT VALUESPLIT VEC-> WEBCALL WHILE WRAP WRAPOPT WRAPRAW WRAPRAWOPT Z-> ZDISCORDS ZIP ZPATTERNDETECTION ZPATTERNS ZSCORE ZSCORETEST [ [] ] ^ bucketizer.and bucketizer.count bucketizer.count.exclude-nulls bucketizer.count.include-nulls bucketizer.count.nonnull bucketizer.first bucketizer.join bucketizer.join.forbid-nulls bucketizer.last bucketizer.mad bucketizer.max bucketizer.max.forbid-nulls bucketizer.mean bucketizer.mean.circular bucketizer.mean.circular.exclude-nulls bucketizer.mean.exclude-nulls bucketizer.median bucketizer.min bucketizer.min.forbid-nulls bucketizer.or bucketizer.percentile bucketizer.sum bucketizer.sum.forbid-nulls d e filter.byattr filter.byclass filter.bylabels filter.bylabelsattr filter.bymetadata filter.last.eq filter.last.ge filter.last.gt filter.last.le filter.last.lt filter.last.ne filter.latencies h m mapper.abs mapper.abscissa mapper.add mapper.and mapper.ceil mapper.count mapper.count.exclude-nulls mapper.count.include-nulls mapper.count.nonnull mapper.day mapper.delta mapper.distinct mapper.dotproduct mapper.dotproduct.positive mapper.dotproduct.sigmoid mapper.dotproduct.tanh mapper.eq mapper.exp mapper.finite mapper.first mapper.floor mapper.ge mapper.geo.approximate mapper.geo.clear mapper.geo.outside mapper.geo.within mapper.gt mapper.hdist mapper.highest mapper.hour mapper.hspeed mapper.join mapper.join.forbid-nulls mapper.kernel.cosine mapper.kernel.epanechnikov mapper.kernel.gaussian mapper.kernel.logistic mapper.kernel.quartic mapper.kernel.silverman mapper.kernel.triangular mapper.kernel.tricube mapper.kernel.triweight mapper.kernel.uniform mapper.last mapper.le mapper.log mapper.lowest mapper.lt mapper.mad mapper.max mapper.max.forbid-nulls mapper.max.x mapper.mean mapper.mean.circular mapper.mean.circular.exclude-nulls mapper.mean.exclude-nulls mapper.median mapper.min mapper.min.forbid-nulls mapper.min.x mapper.minute mapper.mod mapper.month mapper.mul mapper.ne mapper.npdf mapper.or mapper.parsedouble mapper.percentile mapper.pow mapper.product mapper.rate mapper.replace mapper.round mapper.sd mapper.sd.forbid-nulls mapper.second mapper.sigmoid mapper.sum mapper.sum.forbid-nulls mapper.tanh mapper.tick mapper.toboolean mapper.todouble mapper.tolong mapper.tostring mapper.truecourse mapper.var mapper.var.forbid-nulls mapper.vdist mapper.vspeed mapper.weekday mapper.year max.tick.sliding.window max.time.sliding.window ms ns op.add op.add.ignore-nulls op.and op.and.ignore-nulls op.div op.eq op.ge op.gt op.le op.lt op.mask op.mul op.mul.ignore-nulls op.ne op.negmask op.or op.or.ignore-nulls op.sub pi ps reducer.and reducer.and.exclude-nulls reducer.argmax reducer.argmin reducer.count reducer.count.exclude-nulls reducer.count.include-nulls reducer.count.nonnull reducer.join reducer.join.forbid-nulls reducer.join.nonnull reducer.join.urlencoded reducer.mad reducer.max reducer.max.forbid-nulls reducer.max.nonnull reducer.mean reducer.mean.circular reducer.mean.circular.exclude-nulls reducer.mean.exclude-nulls reducer.median reducer.min reducer.min.forbid-nulls reducer.min.nonnull reducer.or reducer.or.exclude-nulls reducer.percentile reducer.product reducer.sd reducer.sd.forbid-nulls reducer.shannonentropy.0 reducer.shannonentropy.1 reducer.sum reducer.sum.forbid-nulls reducer.sum.nonnull reducer.var reducer.var.forbid-nulls s us w { {} | || } ~ ~=
7 .Fully extensible and very flexible WarpScript extensions CALL of external programs (such as TensorFlow) Embeddable in third party applications Usable with any time series datasource Integrated with Pig, Flink, Spark and Storm
8 .Integrates visualization features of Processing 800 'width' STORE 800 'height' STORE 400.0 'maxspeed' STORE 40000.0 'maxalt' STORE 3.0 2.0 2.0 @orbit/heatmap/kernel/triangular 'kernel' STORE @orbit/heatmap/palette/classic 'palette' STORE 'TOKEN''token' STORE $width $height '2D' PGraphics 'MULTIPLY' PblendMode 'CENTER' PimageMode [ $token '~(ALT|CAS)' {} NOW -2000000 ] FETCH DUP 0 GET LASTTICK 'now' STORE [ SWAP bucketizer.last $now STU 0 ] BUCKETIZE // Create heatmap <% 7 GET LIST-> DROP 'CAS' STORE 'ALT' STORE <% $CAS ISNULL NOT $ALT ISNULL NOT && %> <% $kernel $CAS $maxspeed / $width * $ALT $maxalt / 1.0 SWAP - $height * Pimage %> IFT 0 NaN NaN NaN NULL %> MACROREDUCER 'GRAPHER' STORE [ SWAP [] $GRAPHER ] REDUCE DROP // Colorize Ppixels <% DROP Palpha $palette SWAP GET %> LMAP PupdatePixels Pencode Pdecode $width $height '2D' PGraphics // Do the grid PnoFill 0 0 $width 1 - $height 1 - Prect 2.0 PstrokeWeight 200.0 Pcolor Pstroke 250.0 $maxspeed / $width * DUP 0 SWAP $height Pline 0 10000 $maxalt / 1.0 SWAP - $height * DUP $width SWAP Pline SWAP 0 0 Pimage Pencode
9 .HBase Schema
10 .No lookup keys 2 column families, m and v m for metadata, null cq, encrypted serialized thrift structures v for individual values, null cq, GTSEncoder content, possibly encrypted With FASTDIFF_PREFIX, down to ~10 bytes per cell No automatic compaction, possibility to pack chunks of GTS as STRING values
11 .Hash based keys achieve high write distribution 108 Region Servers, typical IT monitoring load (50M active series), ~800k datapoints/s
12 .Write Path
13 .Metadata write path Metadata structures pushed when newly encountered or modified by Ingress Metadata structures saved as they are consumed by Directory instances Content in HBase converges towards latest version
14 .Data write path Push batches of Put to HBase with time and size thresholds Reset Kafka consumption when HBase errors are encountered Sensitive to HBase RS slowdowns due to good key distribution Write performance mainly driven by Kafka partition count and available CPUs in Store
15 .Deletions
16 .Deletion process EU Legal requirement to provide deletion capabilities for hosted services Directory is accessed to retrieve GTS Metadata Can use the data topic or a dedicated one depending on chosen semantics Delete messages pushed to Kafka, one per GTS to delete (partial or complete) Directory will remove Metadata from its memory and from HBase for complete deletes Use of the BulkDelete coprocessor endpoint from the Store daemons Deletes and Puts are treated in order of arrival for sequential consistency Problem of RegionServer becoming hot when deleting certain GTS, rely on sorting GTS as first step
17 .Deletion effect on writes/s on RS 1.3T datapoints deleted over the course of 6 days while ingesting 800k/s datapoints Reads occur simultaneously are roughly 2.75M/s to enable the deletes
18 .Read Path
19 .Life of a fetch query Retrieve Geo Time Series® metadata from Directory Fetch cells from HBase Merge cells into one GTSEncoder per GTS Expand GTSEncoder into a data structure WarpScript can understand Initial (and fallback) method uses one Scanner per GTS fetched Only scans data we will retrieve, but using many scanners is a real performance hit
20 .Enters a custom filter SlicedRowFilter
21 .Filter behavior Row key is sliced Sliced key is compared with valid ranges, row is accepted at first match When slices form a prefix of the row key, hinting is possible When encountering a row key outside of a valid range, hint to seek to the next range Only scan retrieved rows, except for the first row of each scanned region which may be skipped All done in a single Scanner instance
22 .Fetch reloaded When many regions with no hits in the scanner range, useless open can happen Only regions with hits are open, all (but 1) rows scanned per region are returned
23 .Fetch revolutions Split GTS to retrieve in smaller batches which will be treated independently Use a thread pool to issue multiple Scans in parallel Reach performance of multiple million datapoints/s Able to saturate 1Gbps links of RS
24 .Warp10InputFormat Hadoop InputFormat to retrieve data from Warp 10 One InputSplit per Geo Time Series® InputSplit combined up to a certain number of GTS, grouped by RS (of most recent datapoint) Fetcher daemons colocated with Region Servers Perform fetches as described earlier With parallel scanners can easily retrieve 5M datapoints/s per fetcher
25 .Conclusion HBase really rocks for time series data!!! Test drive Warp 10 in standalone mode (no HBase needed) curl -O -L https://dl.bintray.com/cityzendata/generic/io/warp10/warp10/1.2.7-rc2/warp10-1.2.7-rc2.tar.gz tar zxpf warp10-1.2.7-rc2.tar.gz export JAVA_HOME=/path/to/java/home; cd warp10-1.2.7-rc2; ./bin/warp10-standalone.init start Let’s talk about your time series projects @warp10io http://www.warp10.io/ http://groups.google.com/forum/#!forum/warp10-users https://github.com/cityzendata