1. DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia. Collected Data. Data Pre-processing. The Naïve Bayes ...

Oliver发布于2018/06/11 00:00

注脚

1.Experimenting with Text Classification Algorithms in News Articles: SVM vs. Naive Bayesian Algorithm Nuhi BESIMI, Adrian BESIMI, Visar SHEHU DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj , Slovenia 1

2.Collected Data Data Pre-processing The Naïve Bayes Classifier SVM (Support Vector Machine) Experiment and Evaluation Accuracy Execution Time Future work Content DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 2

3.Sources: CNET – http://cnet.com PCWorld – http://pcworld.com TechCrunch – http://techcrunch.com NyTimes – http://nytimes.com Goal – http://goal.com Categories Politics Technology Sports Collected Data DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 3

4.Collected Data (summary) Politics News Articles Technology News Articles Sports News Articles Total Training Data 200 (80 %) 345 (80 %) 409 (80 %) 954 Testing Data 49 (20 %) 86 (20 %) 102 (20 %) 237 Total 249 431 511 1191 CNET PCWorld TechCrunch NyTimes Goal Number of collected documents (news articles) 81 229 121 570 190 DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 4

5.Data Cleaning: Stop-word removal Stemming (Porter Algorithm) Low term frequency filtering (count < 3) Data Transformation: Bag of words model (vector representation) Data Pre-processing DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 5

6.Eager Learners Naïve Bayes Classifier SVM (Support Vector Machine) Classification Techniques DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 6

7.Experiment and Evaluation Testing the accuracy of the classifiers (Total news articles: 237) Classification Techniques Algorithm Naïve Bayes SVM Correctly classified documents 217 178 Accuracy in % 91.5 % 75.1 % DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 7

8.Experiment and Evaluation Politics news articles (Total news articles: 49) Technology news articles (Total news articles: 86) Sports news articles (Total news articles: 102) Classification Techniques (2) Algorithm Naïve Bayes SVM Correctly classified documents 43 29 Accuracy in % 87.7 % 59.1 % Algorithm Naïve Bayes SVM Correctly classified documents 72 86 Accuracy in % 83.7 % 100.0 % Algorithm Naïve Bayes SVM Correctly classified documents 102 70 Accuracy in % 100.0 % 68.6 % DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 8

9.Testing SVM only two classes? (good in some cases) Execution time (in seconds) Experiment and Evaluation Politics & Technology Politics & Sports Technology & Sports Number of documents 135 151 188 Correctly classified documents 120 130 149 Accuracy in % 88.8 % 87.0 % 79.2 % Algorithm Naïve Bayes SVM Training phase (in seconds) 612 7 Testing phase (single text document) 1.5 <0.1 DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 9

10.SVM (Support Vector Machine) Definitely the fastest classifier and faster training (100x faster training than Naïve Bayesian classifier) Works very good in large datasets Works better in two class problems Naïve Bayes Classifier Very accurate when the number of training instances is high enough Slower comparing to SVM Larger dataset… bigger problems Conclusion: the findings DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 10

11.News Archive (way back machine?) Crawl & store news from various media in Macedonia Store the changes in the text (find the text differences) for a given time interval Get the content, not just RSS Create Screen shots Measure similarity (plagiarism) between news sources (cosine similarity) Visualize trends in news Use to verify the facts (Media Fact Checking Service in Macedonia) Financially supported by Metamorphosis Foundation & USAID (maybe) Future Work DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 11

12.Questions? THANK YOU Experimenting with Text Classification Algorithms in News Articles: SVM vs. Naive Bayesian Algorithm Nuhi BESIMI, Adrian BESIMI, Visar SHEHU DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”, Bohinj, Slovenia 12

user picture
  • Oliver
  • Apparently, this user prefers to keep an air of mystery about them.

相关Slides

  • 视觉任务之间是否有关系,或者它们是否无关?例如,表面法线可以简化估算图像的深度吗?直觉回答了这些问题,暗示了视觉任务中存在结构。了解这种结构具有显著的价值;它是传递学习的基本概念,并提供了一种原则性的方法来识别任务之间的冗余,例如,无缝地重用相关任务之间的监督或在一个系统中解决许多任务而不会增加复杂性。 我们提出了一种完全计算的方法来建模视觉任务的空间结构。这是通过在隐空间中的二十六个2D,2.5D,3D和语义任务的字典中查找(一阶和更高阶)传递学习依赖性来完成的。该产品是用于任务迁移学习的计算分类地图。我们研究了这种结构的后果,例如:非平凡的关系,并利用它们来减少对标签数据的需求。例如,我们表明,解决一组10个任务所需的标记数据点总数可以减少大约2/3(与独立训练相比),同时保持性能几乎相同。我们提供了一套用于计算和探测这种分类结构的工具,包括用户可以用来为其用例设计有效监督策略。

  • 尽管最近在生成图像建模方面取得了进展,但是从像ImageNet这样的复杂数据集中成功生成高分辨率,多样化的样本仍然是一个难以实现的目标。为此,我们以最大规模训练了生成性对抗网络,并研究了这种规模所特有的不稳定性。我们发现将正交正则化应用于生成器使得它适合于简单的“截断技巧”,允许通过截断潜在空间来精确控制样本保真度和多样性之间的权衡。我们的修改导致模型在类条件图像合成中达到了新的技术水平。当我们在ImageNet上以128×128分辨率进行训练时,我们的模型(BigGAN)的初始得分(IS)为166.3,Frechet初始距离(FID)为9.6,比之前的最优IS为52.52,FID为18.65有了显著的提升。

  • 2017年,以斯坦福大学为首、包括吴恩达、李开复等一众大咖专家团队齐力打造的人工智能指数(AI Index)重磅年度报告首次发布。从学术、业界发展、政府策略等方面对全年的人工智能全球发展进行了回顾,堪称全年人工智能最强报告。 该重点介绍了人工智能领域的投资和工作岗位前所未有的增长速度,尤其是在游戏和计算机视觉领域进展飞速。

  • 18年12月12日,哈佛大学,麻省理工学院,斯坦福大学以及OpenAI等联合发布了第二届人工智能指数(AI Index)年度报告。 人工智能领域这一行业的发展速度,不仅仅是通过实际产品的产生以及研究成果来衡量,还要考虑经济学家和政策制定者的预测和担忧。这个报告的目标是使用硬数据衡量人工智能领域的发展。 报告中多次提及了中国人工智能的发展以及清华大学: 美国仅占到全球论文发布内容的17%,欧洲是论文最高产的国家,18年发表的论文在全球范围内占比28%,中国紧随其后,占比25%。; 大学人工智能和机器学习相关课程注册率在全球范围都有大幅提升,其中最瞩目的是清华大学,相关课程2017年的注册率比2010年高出16倍,比2016年高出了将近3倍; 各国对人工智能应用方向重视不同。中国非常重视农业科学,工程和技术方面的应用,相比于2000年,2017年,中国加大了对农业方面的重视。 吴恩达也在今天的推特中重磅推荐了这份报告,称“数据太多了”,并划重点了两个报告亮点:人工智能在业界和学界都发展迅速;人工智能的发展仍需要更加多样包容。