什么是立体视觉呢?3D?2D?关于这些你了解多少呢?本章节就关于立体视觉方面做了介绍,什么是立体视觉?简单来说就是对极几何,从几何的角度分析了立体视觉的成像效果,另外介绍了部分活跃的立体视觉成像系统。

注脚

展开查看详情

1. Lecture  9  &  10:     Stereo  Vision   Professor  Fei-­‐Fei  Li   Stanford  Vision  Lab   Fei-Fei Li! Lecture 9 & 10 - ! 1   21-­‐Oct-­‐14  

2. Dimensionality  ReducBon  Machine  (3D  to  2D)   3D world 2D image Point of observation Figures © Stephen E. Palmer, 2002 Fei-Fei Li! Lecture 9 & 10 - !

3. Pinhole  camera   f   f   ⎧ x ⎪⎪x ' = f z •   Common  to  draw  image  plane  in  front    of  the  focal   ⎨ ⎪ y' = f y point       ⎪⎩ z •   Moving  the  image  plane  merely  scales  the  image.   Fei-Fei Li! Lecture 9 & 10 - ! 3   21-­‐Oct-­‐14  

4. RelaBng  a  real-­‐world  point  to  a  point  on  the  camera   In  homogeneous  coordinates:   ⎡ x ⎤ ⎡ f x ⎤ ⎡ f 0 0 0⎤ ⎢ ⎥ y ⎥ P' = ⎢⎢ f y ⎥⎥ = ⎢⎢ 0 f ⎥ 0 0⎥ ⎢ ⎢ z ⎥ ⎢⎣ z ⎥⎦ ⎢⎣ 0 0 1 0⎥⎦ ⎢ ⎥ ⎣ 1 ⎦ M   ideal  world   Intrinsic Assumptions Extrinsic Assumptions •  Unit aspect ratio •  No rotation •  Optical center at (0,0) •  Camera at (0,0,0) •  No skew Fei-Fei Li! Lecture 9 & 10 - ! 4   21-­‐Oct-­‐14  

5. RelaBng  a  real-­‐world  point  to  a  point  on  the  camera   In  homogeneous  coordinates:   ! f x $ ! f $! x $ 0 0 0 # & # & # & y & P' =# f y &=# 0 f 0 0 &# = K [I 0] P # & # &# z & #" z &% " 0 0 1 0 %# & 1 % " K Intrinsic Assumptions Extrinsic Assumptions •  Unit aspect ratio •  No rotation •  Optical center at (0,0) •  Camera at (0,0,0) •  No skew Fei-Fei Li! Lecture 9 & 10 - ! 5   21-­‐Oct-­‐14  

6. Real-­‐world  camera   Intrinsic Assumptions Extrinsic Assumptions •  Optical center at (u0, v0) •  No rotation •  Rectangular pixels •  Camera at (0,0,0) •  Small skew Intrinsic  parameters   ⎡ x ⎤ ⎡u ⎤ ⎡α s u0 0⎤ ⎢ ⎥ ! # y P' = K" I 0 $P w ⎢ v ⎥ = ⎢ 0 β v0 ⎥ 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ z ⎥ ⎢⎣1 ⎥⎦ ⎢⎣ 0 0 1 0⎥⎦ ⎢ ⎥ ⎣ 1 ⎦ Slide  inspiraBon:  S.  Savarese   Fei-Fei Li! Lecture 9 & 10 - !

7. Real-­‐world  camera  +  Real-­‐world  transformaBon   Intrinsic Assumptions Extrinsic Assumptions •  Optical center at (u0, v0) •  Allow rotation •  Rectangular pixels •  Camera at (tx,ty,tz) •  Small skew ⎡ x ⎤ ⎡u ⎤ ⎡α s u0 ⎤ ⎡ r11 r12 r13 t x ⎤ ⎢ ⎥ y P ' = K [R t]P w ⎢ v ⎥ = ⎢ 0 β v0 ⎥ ⎢r21 r22 r23 ⎥ t y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ z ⎥ ⎢⎣1 ⎥⎦ ⎢⎣ 0 0 1 ⎥⎦ ⎢⎣r31 r32 r33 t z ⎥⎦ ⎢ ⎥ ⎣ 1 ⎦ Slide  inspiraBon:  S.  Savarese   Fei-Fei Li! Lecture 9 & 10 - !

8. What  we  will  learn  today?   •  IntroducBon  to  stereo  vision   •  Epipolar  geometry:  a  gentle  intro   •  Parallel  images  &  image  recBficaBon   •  Solving  the  correspondence  problem   •  Homographic  transformaBon   •  AcBve  stereo  vision  system   Reading:      [HZ]  Chapters:  4,  9,  11    [FP]  Chapters:  10     Fei-Fei Li! Lecture 9 & 10 - ! 8   21-­‐Oct-­‐14  

9. What  we  will  learn  today?   •  IntroducBon  to  stereo  vision   •  Epipolar  geometry:  a  gentle  intro   •  Parallel  images  &  image  recBficaBon   •  Solving  the  correspondence  problem   •  Homographic  transformaBon   •  AcBve  stereo  vision  system   Reading:      [HZ]  Chapters:  4,  9,  11    [FP]  Chapters:  10     Fei-Fei Li! Lecture 9 & 10 - ! 9   21-­‐Oct-­‐14  

10. Recovering  3D  from  Images   •  How  can  we  automaBcally  compute  3D  geometry   from  images?   –  What  cues  in  the  image  provide  3D  informaBon?   Real 3D world 2D image ?   Point of observation Fei-Fei Li! Lecture 9 & 10 - ! 10   21-­‐Oct-­‐14  

11. Visual  Cues  for  3D   •  Shading   Slide  credit:  J.  Hayes   Merle  Norman  Cosme5cs,  Los  Angeles   Fei-Fei Li! Lecture 9 & 10 - ! 11   21-­‐Oct-­‐14  

12. Visual  Cues  for  3D   •  Shading   •  Texture   Slide  credit:  J.  Hayes   The  Visual  Cliff,  by  William  Vandivert,  1960   Fei-Fei Li! Lecture 9 & 10 - ! 12   21-­‐Oct-­‐14  

13. Visual  Cues  for  3D   •  Shading   •  Texture   •  Focus   Slide  credit:  J.  Hayes   From  The  Art  of  Photography,  Canon   Fei-Fei Li! Lecture 9 & 10 - ! 13   21-­‐Oct-­‐14  

14. Visual  Cues  for  3D   •  Shading   •  Texture   •  Focus   Slide  credit:  J.  Hayes   •  MoBon   Fei-Fei Li! Lecture 9 & 10 - ! 14   21-­‐Oct-­‐14  

15. Visual  Cues  for  3D   •  Others:   •  Shading   –  Highlights   –  Shadows   –  Silhoueaes   •  Texture   –  Inter-­‐reflecBons   –  Symmetry   –  Light  PolarizaBon   •  Focus   –  ...   Slide  credit:  J.  Hayes   Shape  From  X   •  MoBon   •  X  =  shading,  texture,  focus,  moBon,  ...   •  We’ll  focus  on  the  moBon  cue   Fei-Fei Li! Lecture 9 & 10 - ! 15   21-­‐Oct-­‐14  

16. Stereo  ReconstrucBon   •  The  Stereo  Problem   –  Shape  from  two  (or  more)  images   –  Biological  moBvaBon   known   camera   viewpoints   Slide  credit:  J.  Hayes   Fei-Fei Li! Lecture 9 & 10 - ! 16   21-­‐Oct-­‐14  

17. Why  do  we  have  two  eyes?   Slide  credit:  J.  Hayes   Cyclope                              vs.                                                Odysseus   Fei-Fei Li! Lecture 9 & 10 - ! 17   21-­‐Oct-­‐14  

18. 1.  Two  is  beaer  than  one   Slide  credit:  J.  Hayes   Fei-Fei Li! Lecture 9 & 10 - ! 18   21-­‐Oct-­‐14  

19. 2.  Depth  from  Convergence   Slide  credit:  J.  Hayes   Human performance: up to 6-8 feet Fei-Fei Li! Lecture 9 & 10 - ! 19   21-­‐Oct-­‐14  

20. What  we  will  learn  today?   •  IntroducBon  to  stereo  vision   •  Epipolar  geometry:  a  gentle  intro   •  Parallel  images  &  image  recBficaBon   •  Solving  the  correspondence  problem   •  Homographic  transformaBon   •  AcBve  stereo  vision  system   Reading:      [HZ]  Chapters:  4,  9,  11    [FP]  Chapters:  10     Fei-Fei Li! Lecture 9 & 10 - ! 20   21-­‐Oct-­‐14  

21. Epipolar  geometry   P   p   p’   e   e’   O   O’   •   Epipolar  Plane   •   Epipoles  e,  e’   =  intersecBons  of  baseline  with  image  planes     •   Baseline   =  projecBons  of  the  other  camera  center   •   Epipolar  Lines   =  vanishing  points  of  camera  moBon  direcBon   Fei-Fei Li! Lecture 9 & 10 - ! 21   21-­‐Oct-­‐14  

22. Example:  Converging  image  planes   Fei-Fei Li! Lecture 9 & 10 - ! 22   21-­‐Oct-­‐14  

23. Epipolar  Constraint   -­‐   Two  views  of  the  same  object     -­‐   Suppose  I  know  the  camera  posiBons  and  camera  matrices   -­‐  Given  a  point  on  lem  image,  how  can  I  find  the  corresponding  point  on  right  image?   Fei-Fei Li! Lecture 9 & 10 - ! 23   21-­‐Oct-­‐14  

24. Epipolar  Constraint   •     PotenBal  matches  for  p  have  to  lie  on  the  corresponding  epipolar  line  l’.   •     PotenBal  matches  for  p’  have  to  lie  on  the  corresponding  epipolar  line  l.   Fei-Fei Li! Lecture 9 & 10 - ! 24   21-­‐Oct-­‐14  

25. Epipolar  Constraint   P   ⎡u ⎤ ⎡u ʹ′⎤ p → M P = ⎢⎢ v ⎥⎥ p → M ʹ′ P = ⎢⎢ vʹ′ ⎥⎥ ⎢⎣1 ⎥⎦ ⎢⎣ 1 ⎥⎦ p   p’   O   O’   R,  T   M = K !" I 0 #$ M ' = K '!" R T #$ Fei-Fei Li! Lecture 9 & 10 - ! 25   21-­‐Oct-­‐14  

26. Epipolar  Constraint   P   p’   p   O   R,  T   O’   M = K !" I 0 #$      K1  and  K2  are  known        (calibrated  cameras)   M ' = K '!" R T #$ M = [I 0] M ' = [R T ] Fei-Fei Li! Lecture 9 & 10 - ! 26   21-­‐Oct-­‐14  

27. Epipolar  Constraint   P   p’   p   O   R,  T   O’   T × ( R pʹ′) T p ⋅ [T × (R pʹ′)] = 0 Perpendicular  to  epipolar  plane   Fei-Fei Li! Lecture 9 & 10 - ! 27   21-­‐Oct-­‐14  

28. Cross  product  as  matrix  mulBplicaBon   ⎡ 0 − az a y ⎤ ⎡bx ⎤ ⎢ ⎥ ⎢ ⎥ a × b = ⎢ az 0 − ax ⎥ ⎢by ⎥ = [a× ]b ⎢− a y ax 0 ⎥⎦ ⎢⎣bz ⎥⎦ ⎣ “skew  symmetric  matrix”   Fei-Fei Li! Lecture 9 & 10 - ! 28   21-­‐Oct-­‐14  

29. Epipolar  Constraint   P   p’   p   O   R,  T   O’   T T p ⋅ [T × (R pʹ′)] = 0 → p ⋅ [T× ]⋅ R pʹ′ = 0 (Longuet-­‐Higgins,  1981)   E  =  essenBal  matrix   Fei-Fei Li! Lecture 9 & 10 - ! 29   21-­‐Oct-­‐14